NcWLSurfaceMassDensity

NcWLSurfaceMassDensity — Weak lensing surface mass density

Functions

Properties

double Roff Read / Write
gboolean Roff-fit Read / Write
NcDistance * distance Read / Write / Construct Only
double pcc Read / Write
gboolean pcc-fit Read / Write

Types and Values

Object Hierarchy

    GEnum
    ╰── NcWLSurfaceMassDensityParams
    GObject
    ╰── NcmModel
        ╰── NcWLSurfaceMassDensity

Description

This object implements the projected surface mass density and related quantities, such as the convergence and tangential shear.

The projected surface mass density is [nc_wl_surface_mass_density_sigma()] \begin{equation}\label{eq:sigma} \Sigma (R) = \int \mathrm{d}\chi \, \rho\left(\sqrt{R^2 + \chi^2} \right), \end{equation} where $\rho(r)$ is the three-dimensional mass density profile (NcHaloDensityProfile), $r^2 = R^2 + \chi^2$ is a three-dimensional vector in space, $R$ is a two-dimensional vector from the halo center. In particular, we consider a projection $\Sigma (R)$ onto the lens plane. $\chi$ is the distance along the line of sight.

The mean surface mass density within a circular aperture of radius $R$ is, [nc_wl_surface_mass_density_sigma_mean()] \begin{equation}\label{eq:sigma_mean} \overline{\Sigma} (<R) = \frac{2}{R^2} \int_0^R \mathrm{d}R^\prime \, R^\prime \Sigma (R^\prime). \end{equation}

The convergence $\kappa (R)$ [nc_wl_surface_mass_density_convergence()] and the shear $\gamma(R)$ [nc_wl_surface_mass_density_shear()] are given by, respectively, \begin{equation}\label{eq:convergence} \kappa (R) = \frac{\Sigma (R)}{\Sigma_{crit}}, \end{equation}

  • \begin{equation}\label{eq:shear} \gamma (R) = \frac{\Delta\Sigma (R)}{\Sigma_{crit}} = \frac{\overline{\Sigma} (<R) - \Sigma (R)}{\Sigma_{crit}}, \end{equation} where $\Sigma_{crit}$ is the critical surface density [nc_wl_surface_mass_density_sigma_critical()], \begin{equation}\label{eq:sigma_critical} \Sigma_{crit} = \frac{c^2}{4\pi G} \frac{D_s}{D_l D_{ls}}. \end{equation} where $c^2$ is the speed of light squared [ncm_c_c2()], $G$ is the gravitational constant [ncm_c_G()], $D_s$ and $Dl$ are the angular diameter distances to the source and lens, respectively, and $D_{ls}$ is the angular diameter distance between the lens and source.

See, e.g., Mandelbaum (2006), Umetsu (2012), Applegate (2014), Melchior (2017), Parroni (2017).

Usually $z_{lens} = z_{cluster}, but we define these as two different arguments in order to handle cases where shear signal has been rescaled to a different cluster redshift (following D. Applegate's code.).

Functions

nc_wl_surface_mass_density_new ()

NcWLSurfaceMassDensity *
nc_wl_surface_mass_density_new (NcDistance *dist);

This function allocates memory for a new NcWLSurfaceMassDensity object and sets its properties to the values from the input arguments.

Parameters

dist

a NcDistance

 

Returns

a new NcWLSurfaceMassDensity


nc_wl_surface_mass_density_ref ()

NcWLSurfaceMassDensity *
nc_wl_surface_mass_density_ref (NcWLSurfaceMassDensity *smd);

Increases the reference count of smd by one.

Parameters

Returns

smd .

[transfer full]


nc_wl_surface_mass_density_free ()

void
nc_wl_surface_mass_density_free (NcWLSurfaceMassDensity *smd);

Atomically decrements the reference count of smd by one. If the reference count drops to 0, all memory allocated by smd is released.

Parameters


nc_wl_surface_mass_density_clear ()

void
nc_wl_surface_mass_density_clear (NcWLSurfaceMassDensity **smd);

Atomically decrements the reference count of smd by one. If the reference count drops to 0, all memory allocated by smd is released. Set pointer to NULL.

Parameters


nc_wl_surface_mass_density_prepare ()

void
nc_wl_surface_mass_density_prepare (NcWLSurfaceMassDensity *smd,
                                    NcHICosmo *cosmo);

Prepares the NcWLSurfaceMassDensity object smd for computation.

Parameters

smd

a NcWLSurfaceMassDensity

 

cosmo

a NcHICosmo

 

nc_wl_surface_mass_density_prepare_if_needed ()

void
nc_wl_surface_mass_density_prepare_if_needed
                               (NcWLSurfaceMassDensity *smd,
                                NcHICosmo *cosmo);

Prepares the NcWLSurfaceMassDensity object smd for computation if necessary.

Parameters

smd

a NcWLSurfaceMassDensity

 

cosmo

a NcHICosmo

 

nc_wl_surface_mass_density_sigma ()

gdouble
nc_wl_surface_mass_density_sigma (NcWLSurfaceMassDensity *smd,
                                  NcHaloDensityProfile *dp,
                                  NcHICosmo *cosmo,
                                  const gdouble R,
                                  const gdouble zc);

Computes the surface mass density at R , see Eq. $\eqref{eq:sigma}$.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\Sigma (R)$


nc_wl_surface_mass_density_sigma_mean ()

gdouble
nc_wl_surface_mass_density_sigma_mean (NcWLSurfaceMassDensity *smd,
                                       NcHaloDensityProfile *dp,
                                       NcHICosmo *cosmo,
                                       const gdouble R,
                                       const gdouble zc);

Computes the mean surface mass density inside the circle with radius R , Eq. $\eqref{eq:sigma_mean}$.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\overline{\Sigma} (<R)$


nc_wl_surface_mass_density_sigma_excess ()

gdouble
nc_wl_surface_mass_density_sigma_excess
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zc);

Computes difference between the mean surface mass density inside the circle with radius R (Eq. $\eqref{eq:sigma_mean}$) and the surface mass density at R (Eq. $\eqref{eq:sigma}$).

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\overline{\Sigma} (<R) - \Sigma (R)$


nc_wl_surface_mass_density_sigma_critical ()

gdouble
nc_wl_surface_mass_density_sigma_critical
                               (NcWLSurfaceMassDensity *smd,
                                NcHICosmo *cosmo,
                                const gdouble zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the critical surface density, \begin{equation}\label{eq:def:SigmaC} \Sigma_c = \frac{c^2}{4\pi G} \frac{D_s}{D_l D_{ls}}, \end{equation} where $c^2$ is the speed of light squared [ncm_c_c2()], $G$ is the gravitational constant in units of $m^3/s^2 M_\odot^{-1}$ [ncm_c_G_mass_solar()], $D_s$ ($D_l$) is the angular diameter distance from the observer to the source (lens), and $D_{ls}$ is the angular diameter distance between the lens and the source.

Parameters

smd

a NcWLSurfaceMassDensity

 

cosmo

a NcHICosmo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

the critical surface density $\Sigma_c$ in units of $M_\odot / Mpc^2$


nc_wl_surface_mass_density_sigma_critical_infinity ()

gdouble
nc_wl_surface_mass_density_sigma_critical_infinity
                               (NcWLSurfaceMassDensity *smd,
                                NcHICosmo *cosmo,
                                const gdouble zl,
                                const gdouble zc);

Computes the critical surface density, \begin{equation}\label{eq:def:SigmaC} \Sigma_c = \frac{c^2}{4\pi G} \frac{D_\infty}{D_l D_{l\infty}}, \end{equation} where $c^2$ is the speed of light squared [ncm_c_c2()], $G$ is the gravitational constant in units of $m^3/s^2 M_\odot^{-1}$ [ncm_c_G_mass_solar()], $D_\infty$ ($D_l$) is the angular diameter distance from the observer to the source at infinite redshift (lens), and $D_{l\infty}$ is the angular diameter distance between the lens and the source.

Parameters

smd

a NcWLSurfaceMassDensity

 

cosmo

a NcHICosmo

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

the critical surface density $\Sigma_c$ in units of $M_\odot / Mpc^2$


nc_wl_surface_mass_density_convergence ()

gdouble
nc_wl_surface_mass_density_convergence
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the convergence $\kappa(R)$ at R , see Eq $\eqref{eq:convergence}$.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\kappa(R)$


nc_wl_surface_mass_density_convergence_infinity ()

gdouble
nc_wl_surface_mass_density_convergence_infinity
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zl,
                                const gdouble zc);

Computes the convergence $\kappa_\infty(R)$ at R , see Eq $\eqref{eq:convergence}$, and sources at infinite redshift.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\kappa_\infty(R)$


nc_wl_surface_mass_density_shear ()

gdouble
nc_wl_surface_mass_density_shear (NcWLSurfaceMassDensity *smd,
                                  NcHaloDensityProfile *dp,
                                  NcHICosmo *cosmo,
                                  const gdouble R,
                                  const gdouble zs,
                                  const gdouble zl,
                                  const gdouble zc);

Computes the shear $\gamma(R)$ at R , see Eq $\eqref{eq:shear}$.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\gamma(R)$


nc_wl_surface_mass_density_shear_infinity ()

gdouble
nc_wl_surface_mass_density_shear_infinity
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zl,
                                const gdouble zc);

Computes the shear $\gamma_\infty (R)$ at R , see Eq $\eqref{eq:shear}$, and source at infinite redshift.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\gamma_\infty (R)$


nc_wl_surface_mass_density_reduced_shear ()

gdouble
nc_wl_surface_mass_density_reduced_shear
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the reduced shear: $$ g(R) = \frac{\gamma(R)}{1 - \kappa(R)},$$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()] and $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()].

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$g(R)$


nc_wl_surface_mass_density_reduced_shear_infinity ()

gdouble
nc_wl_surface_mass_density_reduced_shear_infinity
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the reduced shear assuming a lensed source at infinite redshift: $$ g(R) = \frac{\beta_s(zb)\gamma(R)}{1 - \beta_s(zb) \kappa(R)}, $$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()], $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()], $z_b$ is the background-galaxy redshift and $$\beta_s = \frac{D_s}{D_l D_{ls}} \frac{D_\infty}{D_l D_{l\infty}}.$$ See Applegate (2014)

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$g(R)$, source at $z = \infty$


nc_wl_surface_mass_density_magnification ()

gdouble
nc_wl_surface_mass_density_magnification
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the reduced shear: $$ \mu(R) = \frac{1}{(1 - \kappa(R))^2 - \vert\gamma^2(R) \vert},$$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()] and $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()].

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\mu(R)$


nc_wl_surface_mass_density_reduced_shear_optzs_prep ()

void
nc_wl_surface_mass_density_reduced_shear_optzs_prep
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble zl,
                                const gdouble zc,
                                NcWLSurfaceMassDensityOptzs *optzs);

Computes the reduced shear: $$ g(R) = \frac{\gamma(R)}{1 - \kappa(R)},$$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()] and $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()].

FIXME

[skip]

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo

 

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

optzs

a NcWLSurfaceMassDensityOptzs

 

nc_wl_surface_mass_density_reduced_shear_optzs ()

gdouble
nc_wl_surface_mass_density_reduced_shear_optzs
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble zs,
                                const gdouble zl,
                                NcWLSurfaceMassDensityOptzs *optzs);

Computes the reduced shear: $$ g(R) = \frac{\gamma(R)}{1 - \kappa(R)},$$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()] and $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()].

FIXME

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

zs

source redshift $z_\mathrm{source}$

 

zl

lens redshift $z_\mathrm{lens}$

 

optzs

a NcWLSurfaceMassDensityOptzs

 

Returns

$g(R)$


nc_wl_surface_mass_density_sigma_array ()

GArray *
nc_wl_surface_mass_density_sigma_array
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *R,
                                gdouble fin,
                                gdouble fout,
                                const gdouble zc);

Computes the surface mass density at R , see Eq. $\eqref{eq:sigma}$.

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo.

[element-type gdouble]

fin

factor to multiply $R$, it should be $1$ or the appropriated unit conversion

 

fout

factor to multiply $\rho(R)$, it should be $1$ or the appropriated unit conversion

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\Sigma (R)$.

[transfer full][element-type gdouble]


nc_wl_surface_mass_density_sigma_excess_array ()

GArray *
nc_wl_surface_mass_density_sigma_excess_array
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *R,
                                gdouble fin,
                                gdouble fout,
                                const gdouble zc);

Computes difference between the mean surface mass density inside the circle with radius R (Eq. $\eqref{eq:sigma_mean}$) and the surface mass density at R (Eq. $\eqref{eq:sigma}$).

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo.

[element-type gdouble]

fin

factor to multiply $R$, it should be $1$ or the appropriated unit conversion

 

fout

factor to multiply $\rho(R)$, it should be $1$ or the appropriated unit conversion

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$\overline{\Sigma} (<R) - \Sigma (R)$.

[transfer full][element-type gdouble]


nc_wl_surface_mass_density_reduced_shear_array ()

GArray *
nc_wl_surface_mass_density_reduced_shear_array
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *R,
                                gdouble fin,
                                gdouble fout,
                                GArray *zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the reduced shear: $$ g(R) = \frac{\gamma(R)}{1 - \kappa(R)},$$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()] and $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()].

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo.

[element-type gdouble]

fin

factor to multiply $R$, it should be $1$ or the appropriated unit conversion

 

fout

factor to multiply $g(R)$, it should be $1$ or the appropriated unit conversion

 

zs

source redshift $z_\mathrm{source}$.

[element-type gdouble]

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$g(R)$.

[transfer full][element-type gdouble]


nc_wl_surface_mass_density_reduced_shear_array_equal ()

GArray *
nc_wl_surface_mass_density_reduced_shear_array_equal
                               (NcWLSurfaceMassDensity *smd,
                                NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *R,
                                gdouble fin,
                                gdouble fout,
                                GArray *zs,
                                const gdouble zl,
                                const gdouble zc);

Computes the reduced shear: $$ g(R) = \frac{\gamma(R)}{1 - \kappa(R)},$$ where $\gamma(R)$ is the shear [nc_wl_surface_mass_density_shear()] and $\kappa(R)$ is the convergence [nc_wl_surface_mass_density_convergence()].

Parameters

smd

a NcWLSurfaceMassDensity

 

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

projected radius with respect to the center of the lens / halo.

[element-type gdouble]

fin

factor to multiply $R$, it should be $1$ or the appropriated unit conversion

 

fout

factor to multiply $g(R)$, it should be $1$ or the appropriated unit conversion

 

zs

source redshift $z_\mathrm{source}$.

[element-type gdouble]

zl

lens redshift $z_\mathrm{lens}$

 

zc

cluster redshift $z_\mathrm{cluster}$

 

Returns

$g(R)$.

[transfer full][element-type gdouble]

Types and Values

enum NcWLSurfaceMassDensityParams

FIXME

Members

NC_WL_SURFACE_MASS_DENSITY_PCC

percentage of correctly centered clusters

 

NC_WL_SURFACE_MASS_DENSITY_ROFF

scale length of the miscentering probability distribution [Mpc/h]

 

NC_WL_SURFACE_MASS_DENSITY_DEFAULT_PCC

#define NC_WL_SURFACE_MASS_DENSITY_DEFAULT_PCC  (0.8)

NC_WL_SURFACE_MASS_DENSITY_DEFAULT_ROFF

#define NC_WL_SURFACE_MASS_DENSITY_DEFAULT_ROFF  (1.0)

NC_WL_SURFACE_MASS_DENSITY_DEFAULT_PARAMS_ABSTOL

#define NC_WL_SURFACE_MASS_DENSITY_DEFAULT_PARAMS_ABSTOL (0.0)

struct NcWLSurfaceMassDensityOptzs

struct NcWLSurfaceMassDensityOptzs {
};

Optimization structure.

Property Details

The “Roff” property

  “Roff”                     double

Scale length of the miscentering probability distribution. FIXME Set correct values (limits) Units: Mpc

Owner: NcWLSurfaceMassDensity

Flags: Read / Write

Default value: 1


The “Roff-fit” property

  “Roff-fit”                 gboolean

R_{off}:fit.

Owner: NcWLSurfaceMassDensity

Flags: Read / Write

Default value: FALSE


The “distance” property

  “distance”                 NcDistance *

This property keeps the object NcDistance.

Owner: NcWLSurfaceMassDensity

Flags: Read / Write / Construct Only


The “pcc” property

  “pcc”                      double

Percentage of correctly centered clusters. Interval: [0.0, 1.0]

Owner: NcWLSurfaceMassDensity

Flags: Read / Write

Default value: 0.8


The “pcc-fit” property

  “pcc-fit”                  gboolean

p_{cc}:fit.

Owner: NcWLSurfaceMassDensity

Flags: Read / Write

Default value: FALSE