NcHaloDensityProfile

NcHaloDensityProfile — Abstract class for density profile functions.

Functions

Properties

double Delta Read / Write / Construct Only
double cDelta Read / Write
gboolean cDelta-fit Read / Write
double lnXf Read / Write / Construct
double lnXi Read / Write / Construct
double log10MDelta Read / Write
gboolean log10MDelta-fit Read / Write
NcHaloDensityProfileMassDef mass-def Read / Write / Construct Only
double reltol Read / Write / Construct

Types and Values

Object Hierarchy

    GEnum
    ├── NcHaloDensityProfileMassDef
    ╰── NcHaloDensityProfileSParams
    GObject
    ╰── NcmModel
        ╰── NcHaloDensityProfile
            ├── NcHaloDensityProfileDK14
            ├── NcHaloDensityProfileEinasto
            ├── NcHaloDensityProfileHernquist
            ╰── NcHaloDensityProfileNFW

Description

This abstract class describes the radial matter density profile in real space. Each implementation must provide, at least, the dimensionless 3D density: \begin{equation}\label{def:dlrho} \hat\rho(x) \equiv \frac{\rho(x r_s)}{\rho_s}, \quad \rho(r) = \rho_s \hat\rho\left(\frac{r}{r_s}\right), \end{equation} where $\rho(r)$ is the actual density profile, $\rho_s$ is the profile scale and $r_s$ the scale radius. This function corresponds to the virtual function nc_halo_density_profile_eval_dl_density().

Parametrization

The two parameters $\rho_s$ and $r_s$ are described by the fundamental parametrization in terms of $M_\Delta$ (“log10MDelta”) and the concentration $c_\Delta$ (“cDelta”) given a mass defined by $\Delta$ (“Delta”) and a background density $\rho_\mathrm{bg}$ (“mass-def”). Strictly speaking, the object has two unmutable properties “Delta” and “mass-def” that defines the value of $\Delta$ and the background density $\rho_\mathrm{bg}$. Once these properties are defined, one can compute $(r_s,\;\rho_s)$ from $(M_\Delta,\; c_\Delta)$.

Computing $r_s$

The mass-radius relation defined in terms of the background density is \begin{equation}\label{eq:mrr} M_\Delta = \frac{4\pi}{3}r_\Delta^3\Delta\,\rho_\mathrm{bg}, \end{equation} which implicitly defines $r_\Delta$. The concentration $c_\Delta$ is then defined by \begin{equation}\label{def:cDelta} c_\Delta \equiv \frac{r_\Delta}{r_s}. \end{equation} Consequently, the scale radius $r_s$ can be computed from $M_\Delta$ and $c_\Delta$ using \begin{equation}\label{def:r_s} r_s = \frac{1}{c_\Delta}\left(\frac{3M_\Delta}{4\pi\Delta\,\rho_\mathrm{bg}}\right)^{1/3} = \frac{r_{s0}}{(\Delta\,\rho_\mathrm{bg})^{1/3}}, \qquad r_{s0} \equiv \frac{1}{c_\Delta}\left(\frac{3M_\Delta}{4\pi}\right)^{1/3}. \end{equation} We split the expression of $r_s$ in a constant part $r_{s0}$ and a redshift dependent (time-depedent) part $(\Delta\,\rho_\mathrm{bg}(z))^{-1/3}$.

Note that, the parameter $r_s$ can be computed directly from $(M_\Delta,\; c_\Delta)$, given the mass definition, without refering to $\hat\rho(x)$.

Computing $\rho_s$

Now, applying the mass definition $M_\Delta$ in terms of the radius $r_\Delta$ to our profile results in \begin{equation}\label{eq:def:Mr} M_\Delta = \int_0^{r_\Delta}4\pi r^2\rho(r)\mathrm{d}r = 4\pi r_s^3 \rho_s \int_0^{c_\Delta}x^2\hat\rho(x)\mathrm{d}x = 4\pi r_s^3 \rho_s I_{x^2\hat\rho}(c_\Delta), \end{equation} where we defined \begin{equation}\label{def:Ix2_dld} I_{x^2\hat\rho}(c_\Delta) \equiv \int_0^{c_\Delta}x^2\hat\rho(x)\mathrm{d}x. \end{equation} This integral can be implemented through the virtual method nc_halo_density_profile_eval_dl_spher_mass(), otherwise it will be computed numerically using nc_halo_density_profile_eval_dl_density(). This same mass can be obtained from the background density using mass-radius relation \eqref{eq:mrr}, consequently \begin{equation}\label{def:rho_s} \rho_s = \frac{c_\Delta^3\Delta\,\rho_\mathrm{bg}}{3I_{x^2\hat\rho}(c_\Delta)}. \end{equation} The only redshift dependency (time-dependency) here comes from the value of $\rho_\mathrm{bg}(z)$, for this reason it is convenient to define a constant quantity \begin{equation}\label{def:rho_s0} \rho_{s0} \equiv \frac{\rho_s}{\Delta\,\rho_\mathrm{bg}} = \frac{c_\Delta^3}{3I_{x^2\hat\rho}(c_\Delta)}. \end{equation}


2D projection

The surface density obtained from the projection of the density profile along the line-of-sight is given by \begin{align} \Sigma(R) &= \int_{-\infty}^\infty\rho(\sqrt{R^2+z^2})\mathrm{d}z, \\ &= 2\rho_s\int_{0}^\infty\hat\rho(\sqrt{R^2/r_s^2 + z^2/r_s^2})\mathrm{d}z, \\ \label{eq:def:hatSigma} &= r_s\rho_s\hat\Sigma(R / r_s), & \hat\Sigma(X) &\equiv 2\int_{0}^\infty\hat\rho(\sqrt{X^2 + u^2})\mathrm{d}u. \end{align} In the equation above we obtain the 2D projection $\Sigma(R)$ in terms of its dimensionless version $\hat\Sigma(X)$, where $X = R / r_s$. The user can implement the method nc_halo_density_profile_eval_dl_2d_density() providing $\hat\Sigma(X)$ directly or rely on the numerical implementation.

Mass on the cylinder of radius $R$

Using the 2D projection $\Sigma(R)$ one computes the total mass inside an infinite cylinder of radius $R$ using \begin{align} \overline{M}(R) &= \int_0^R\Sigma(R')2\pi R'\mathrm{d}R' = 2\pi r_s^3\rho_s \hat{\overline{M}}(<R/r_s), \\ \label{eq:def:cylmass} \hat{\overline{M}}(X) &\equiv \int_0^X\hat\Sigma(X')X'\mathrm{d}X'. \end{align} Here it is possible to implement the function $\hat{\overline{M}}(X)$ through the method nc_halo_density_profile_eval_dl_cyl_mass() or to use the default numerical implementation.


Numerical computation

If the implementation (i.e., a particular radial profile implementation of this abstract class) does not provide any of the functions: nc_halo_density_profile_eval_dl_spher_mass(), nc_halo_density_profile_eval_dl_2d_density(), nc_halo_density_profile_eval_dl_cyl_mass(), they will be computed numerically integrating the density $\hat{\rho}$ (nc_halo_density_profile_eval_dl_density()). These functions will be prepared to be computed inside the interval $(X_i,\,X_f)$ defined by “lnXi” and “lnXf” and using the relative tolerance “reltol”. See the following functions to control this behavior: nc_halo_density_profile_set_reltol(),

nc_halo_density_profile_set_lnXi(),

nc_halo_density_profile_set_lnXf().


Units

Distance: $[r] = \mathrm{Mpc}$; Mass: $[M_\Delta] = \mathrm{M}_\odot$; Density: $[\rho] = \mathrm{M}_\odot \, \mathrm{Mpc}^{-3}$; Surface mass density: $[\Sigma] = \mathrm{M}_\odot \, \mathrm{Mpc}^{-2}$.

Functions

nc_halo_density_profile_ref ()

NcHaloDensityProfile *
nc_halo_density_profile_ref (NcHaloDensityProfile *dp);

Increases the reference count of dp by one.

Parameters

Returns

dp .

[transfer full]


nc_halo_density_profile_free ()

void
nc_halo_density_profile_free (NcHaloDensityProfile *dp);

Atomically decrements the reference count of dp by one. If the reference count drops to 0, all memory allocated by dp is released.

Parameters


nc_halo_density_profile_clear ()

void
nc_halo_density_profile_clear (NcHaloDensityProfile **dp);

Atomically decrements the reference count of dp by one. If the reference count drops to 0, all memory allocated by dp is released. Set the pointer to NULL;

Parameters


nc_halo_density_profile_set_reltol ()

void
nc_halo_density_profile_set_reltol (NcHaloDensityProfile *dp,
                                    const gdouble reltol);

Sets the relative tolerance used in the numerical computations.

Parameters

dp

a NcHaloDensityProfile

 

reltol

relative tolerance

 

nc_halo_density_profile_set_lnXi ()

void
nc_halo_density_profile_set_lnXi (NcHaloDensityProfile *dp,
                                  const gdouble lnXi);

Sets the numerical computation lower limit.

Parameters

dp

a NcHaloDensityProfile

 

lnXi

interval lower limit $\ln(X_i)$

 

nc_halo_density_profile_set_lnXf ()

void
nc_halo_density_profile_set_lnXf (NcHaloDensityProfile *dp,
                                  const gdouble lnXf);

Sets the numerical computation upper limit.

Parameters

dp

a NcHaloDensityProfile

 

lnXf

interval upper limit $\ln(X_f)$

 

nc_halo_density_profile_get_reltol ()

gdouble
nc_halo_density_profile_get_reltol (NcHaloDensityProfile *dp);

Gets the current relative tolerance.

Parameters

Returns

reltol.


nc_halo_density_profile_get_lnXi ()

gdouble
nc_halo_density_profile_get_lnXi (NcHaloDensityProfile *dp);

Gets the computation interval lower limit $\ln(X_i)$.

Parameters

Returns

$\ln(X_i)$.


nc_halo_density_profile_get_lnXf ()

gdouble
nc_halo_density_profile_get_lnXf (NcHaloDensityProfile *dp);

Gets the computation interval upper limit $\ln(X_f)$.

Parameters

Returns

$\ln(X_f)$.


nc_halo_density_profile_get_phys_limts ()

void
nc_halo_density_profile_get_phys_limts
                               (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble z,
                                gdouble *Ri,
                                gdouble *Rf);

Gets the physical computation interval $(R_i,\, R_f)$. This interval is relevant only if the object relies on the numerical computation of the functions:

  • nc_halo_density_profile_eval_dl_2d_density()

  • nc_halo_density_profile_eval_dl_cyl_mass()

Parameters

cosmo

a NcHICosmo

 

z

redshift $z$

 

dp

a NcHaloDensityProfile

 

Ri

lower limit $R_i\;\left[\mathrm{Mpc}\right]$.

[out]

Rf

lower limit $R_f\;\left[\mathrm{Mpc}\right]$.

[out]

nc_halo_density_profile_eval_dl_density ()

gdouble
nc_halo_density_profile_eval_dl_density
                               (NcHaloDensityProfile *dp,
                                const gdouble x);

This function computes the dimensionless density profile, see Eq. \eqref{def:dlrho}.

[virtual eval_dl_density]

Parameters

dp

a NcHaloDensityProfile

 

x

dimensionless radius $x = r / r_s$

 

Returns

the value of the dimensionless density profile $\hat\rho(x)$.


nc_halo_density_profile_eval_dl_spher_mass ()

gdouble
nc_halo_density_profile_eval_dl_spher_mass
                               (NcHaloDensityProfile *dp,
                                const gdouble x);

This function computes the 2d projection of the dimensionless density profile as described in Eq. \eqref{def:Ix2_dld}.

[virtual eval_dl_spher_mass]

Parameters

dp

a NcHaloDensityProfile

 

x

dimensionless radius $x = r / r_s$

 

Returns

the value of the integral $I_{x^2\hat\rho}(x)$.


nc_halo_density_profile_eval_dl_2d_density ()

gdouble
nc_halo_density_profile_eval_dl_2d_density
                               (NcHaloDensityProfile *dp,
                                const gdouble X);

This function computes the dimensionless 2D density profile, see Eq. \eqref{eq:def:hatSigma}.

[virtual eval_dl_2d_density]

Parameters

dp

a NcHaloDensityProfile

 

X

dimensionless 2D radius $X = R / r_s$

 

Returns

the value of the dimensionless 2D density profile $\hat\Sigma(X)$.


nc_halo_density_profile_eval_dl_cyl_mass ()

gdouble
nc_halo_density_profile_eval_dl_cyl_mass
                               (NcHaloDensityProfile *dp,
                                const gdouble X);

This function computes the dimensionless cylinder mass, see Eq. \eqref{eq:def:cylmass}.

[virtual eval_dl_cyl_mass]

Parameters

dp

a NcHaloDensityProfile

 

X

dimensionless 2D radius $X = R / r_s$

 

Returns

the value of the dimensionless cylinder mass $\hat{\overline{\Sigma}}(X)$.


nc_halo_density_profile_Delta ()

gdouble
nc_halo_density_profile_Delta (NcHaloDensityProfile *dp,
                               NcHICosmo *cosmo,
                               const gdouble z);

This function computes the overdensity with respect to the mass density $\Delta$.

The virial overdensity in units of the critical density. Following Colossus code (Diemer 2018) INCLUIR REF! This function uses the fitting formula of Bryan & Norman 1998 INCLUIR REF!

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift $z$

 

Returns

the value of $\Delta$.


nc_halo_density_profile_rho_bg ()

gdouble
nc_halo_density_profile_rho_bg (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble z);

This function computes the background mass density $\rho_\mathrm{bg}$ in $M_\odot\mathrm{Mpc}^{-3}$.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift $z$

 

Returns

the value of $\rho_\mathrm{bg}\;\left[M_\odot\mathrm{Mpc}^{-3}\right]$.


nc_halo_density_profile_Delta_rho_bg ()

gdouble
nc_halo_density_profile_Delta_rho_bg (NcHaloDensityProfile *dp,
                                      NcHICosmo *cosmo,
                                      const gdouble z);

This function computes the mass density threshold $\Delta\,\rho_bg$ in $M_\odot\mathrm{Mpc}^{-3}$.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift $z$

 

Returns

the value of $\Delta\,\rho_bg\;\left[M_\odot\mathrm{Mpc}^{-3}\right]$.


nc_halo_density_profile_rho_s ()

gdouble
nc_halo_density_profile_rho_s (NcHaloDensityProfile *dp,
                               NcHICosmo *cosmo,
                               const gdouble z);

This function computes the $\rho_s$ parameter as described in Eqs. \eqref{def:rho_s} and \eqref{def:rho_s0}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift $z$

 

Returns

the value of $\rho_s(z)\left[M_\odot\times\mathrm{Mpc}^{-3}\right]$.


nc_halo_density_profile_r_s ()

gdouble
nc_halo_density_profile_r_s (NcHaloDensityProfile *dp,
                             NcHICosmo *cosmo,
                             const gdouble z);

This function computes the $r_s$ parameter as described in Eq. \eqref{def:r_s}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift $z$

 

Returns

the value of $r_s(z)\;\left[\mathrm{Mpc}\right]$.


nc_halo_density_profile_r_s_rho_s ()

void
nc_halo_density_profile_r_s_rho_s (NcHaloDensityProfile *dp,
                                   NcHICosmo *cosmo,
                                   const gdouble z,
                                   gdouble *r_s,
                                   gdouble *rho_s);

This function computes $r_s$ and $\rho_s$ parameters as described in Eqs. \eqref{def:r_s}, \eqref{def:rho_s} and \eqref{def:rho_s0}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift $z$

 

r_s

$r_s\;\left[\mathrm{Mpc}\right]$.

[out]

rho_s

$\rho_s\;\left[M_\odot\times\mathrm{Mpc}^{-3}\right]$.

[out]

nc_halo_density_profile_eval_density ()

gdouble
nc_halo_density_profile_eval_density (NcHaloDensityProfile *dp,
                                      NcHICosmo *cosmo,
                                      const gdouble r,
                                      const gdouble z);

This function computes the density profile in real space.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

r

radius $r\;\left[\mathrm{Mpc}\right]$

 

z

redshift $z$

 

Returns

the value of the density profile $\rho(r)\;\left[M_\odot\times\mathrm{Mpc}^{-3}\right]$.


nc_halo_density_profile_eval_spher_mass ()

gdouble
nc_halo_density_profile_eval_spher_mass
                               (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble z);

This function computes the total mass enclose in the sphere of radius $r$, see Eq. \eqref{eq:def:Mr}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

z

redshift

 

Returns

the total spherical mass $M(r)\;\left[M_\odot\right]$.


nc_halo_density_profile_eval_2d_density ()

gdouble
nc_halo_density_profile_eval_2d_density
                               (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                const gdouble R,
                                const gdouble z);

This function computes the 2D projection of the density profile at radius $R$ and redshift $z$, see Eq. \eqref{}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

radius $R$ in Mpc

 

z

redshift $z$

 

Returns

the value of $\Sigma(R)\left[M_\odot\times\mathrm{Mpc}^{-2}\right]$.


nc_halo_density_profile_eval_cyl_mass ()

gdouble
nc_halo_density_profile_eval_cyl_mass (NcHaloDensityProfile *dp,
                                       NcHICosmo *cosmo,
                                       const gdouble R,
                                       const gdouble z);

This function computes the total mass enclose in the cylinder of radius $R$, see Eq. \eqref{}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

radius $R\left[\mathrm{Mpc}\right]$

 

z

redshift $z$

 

Returns

the value of $\overline{\Sigma}(R)\left[M_\odot\right]$.


nc_halo_density_profile_eval_density_array ()

GArray *
nc_halo_density_profile_eval_density_array
                               (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *r,
                                gdouble fin,
                                gdouble fout,
                                const gdouble z);

This function computes the density profile in real space.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

r

radius $r\;\left[\mathrm{Mpc}\right]$.

[in][element-type gdouble]

fin

input array factor

 

fout

output array factor

 

z

redshift $z$

 

Returns

the value of the density profile $\rho(r)\;\left[M_\odot\times\mathrm{Mpc}^{-3}\right]$.

[transfer full][element-type gdouble]


nc_halo_density_profile_eval_2d_density_array ()

GArray *
nc_halo_density_profile_eval_2d_density_array
                               (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *R,
                                gdouble fin,
                                gdouble fout,
                                const gdouble z);

This function computes 2D projection of the density profile at radius $R$ and redshift $z$, see Eq. \eqref{}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

radius $r\;\left[\mathrm{Mpc}\right]$.

[in][element-type gdouble]

fin

input array factor

 

fout

output array factor

 

z

redshift $z$

 

Returns

the value of $\Sigma(R)\left[M_\odot\times\mathrm{Mpc}^{-2}\right]$.

[transfer full][element-type gdouble]


nc_halo_density_profile_eval_cyl_mass_array ()

GArray *
nc_halo_density_profile_eval_cyl_mass_array
                               (NcHaloDensityProfile *dp,
                                NcHICosmo *cosmo,
                                GArray *R,
                                gdouble fin,
                                gdouble fout,
                                const gdouble z);

This function computes the total mass enclose in the cylinder of radius $R$, see Eq. \eqref{}.

Parameters

dp

a NcHaloDensityProfile

 

cosmo

a NcHICosmo

 

R

radius $r\;\left[\mathrm{Mpc}\right]$.

[in][element-type gdouble]

fin

input array factor

 

fout

output array factor

 

z

redshift $z$

 

Returns

the value of $\overline{\Sigma}(R)\left[M_\odot\right]$.

[transfer full][element-type gdouble]


nc_halo_density_profile_eval_numint_dl_spher_mass ()

gdouble
nc_halo_density_profile_eval_numint_dl_spher_mass
                               (NcHaloDensityProfile *dp,
                                const gdouble x);

This function computes the 2d projection of the dimensionless density profile as described in Eq. \eqref{def:Ix2_dld}. This is the default implementation that will be used unless the child object provides one. This interface is present for testing purpose.

Parameters

dp

a NcHaloDensityProfile

 

x

dimensionless radius $x = r / r_s$

 

Returns

the value of the integral $I_{x^2\hat\rho}(c_\Delta)$.


nc_halo_density_profile_eval_numint_dl_2d_density ()

gdouble
nc_halo_density_profile_eval_numint_dl_2d_density
                               (NcHaloDensityProfile *dp,
                                const gdouble X);

This function computes the dimensionless 2D density profile, see Eq. \eqref{eq:def:hatSigma}. This is the default implementation that will be used unless the child object provides one. This interface is present for testing purpose.

Parameters

dp

a NcHaloDensityProfile

 

X

dimensionless 2D radius $X = R / r_s$

 

Returns

the value of the dimensionless 2D density profile $\hat\Sigma(X)$.


nc_halo_density_profile_eval_numint_dl_cyl_mass ()

gdouble
nc_halo_density_profile_eval_numint_dl_cyl_mass
                               (NcHaloDensityProfile *dp,
                                const gdouble X);

This function computes the dimensionless cylinder mass, see Eq. \eqref{eq:def:cylmass}. This is the default implementation that will be used unless the child object provides one. This interface is present for testing purpose.

Parameters

dp

a NcHaloDensityProfile

 

X

dimensionless 2D radius $X = R / r_s$

 

Returns

the value of the dimensionless cylinder mass $\hat{\overline{\Sigma}}(X)$.

Types and Values

enum NcHaloDensityProfileMassDef

Spherical overdensity halo mass: $$M_\Delta = \frac{4\pi}{3} \Delta \rho_\mathrm{bg} r_\Delta^3,$$ where $\rho_\mathrm{bg}$ is the background density of the universe at redshift z, $\rho_\mathrm{bg} (z)$. For NC_HALO_DENSITY_PROFILE_MASS_DEF_VIRIAL , the parameter “log10MDelta” is ignored and \begin{equation}\label{def:DVir} \Delta_\mathrm{Vir} = 18 \pi^2 + 82 x - 39 x^2, \quad x \equiv \Omega_m(z) - 1. \end{equation}

Members

NC_HALO_DENSITY_PROFILE_MASS_DEF_MEAN

halo mass defined in terms of the mean density $\rho_\mathrm{bg} = \rho_m(z)$

 

NC_HALO_DENSITY_PROFILE_MASS_DEF_CRITICAL

halo mass defined in terms of the critical density $\rho_\mathrm{bg} = \rho_\mathrm{crit}(z)$

 

NC_HALO_DENSITY_PROFILE_MASS_DEF_VIRIAL

halo mass defined in terms of virial overdensity times the critical density $\rho_\mathrm{bg} = \rho_\mathrm{crit}(z)$

 

enum NcHaloDensityProfileSParams

Fundamental parametrization of the profile $\rho(r)$, any additional parameter must be included in the implementation of this class.

Members

NC_HALO_DENSITY_PROFILE_C_DELTA

concentration parameter $r_\Delta$

 

NC_HALO_DENSITY_PROFILE_LOG10M_DELTA

halo mass $\log_{10}(M_\Delta)$

 

NC_HALO_DENSITY_PROFILE_DEFAULT_C_DELTA

#define NC_HALO_DENSITY_PROFILE_DEFAULT_C_DELTA (4.0)

NC_HALO_DENSITY_PROFILE_DEFAULT_LOG10M_DELTA

#define NC_HALO_DENSITY_PROFILE_DEFAULT_LOG10M_DELTA (log10 (2.0e14))

NC_HALO_DENSITY_PROFILE_DEFAULT_PARAMS_ABSTOL

#define NC_HALO_DENSITY_PROFILE_DEFAULT_PARAMS_ABSTOL (0.0)

Property Details

The “Delta” property

  “Delta”                    double

Constant that indicates the overdensity with respect to the background density $\rho_\mathrm{bg}$. See “mass-def”.

Owner: NcHaloDensityProfile

Flags: Read / Write / Construct Only

Allowed values: [100,3200]

Default value: 200


The “cDelta” property

  “cDelta”                   double

Concentration parameter, $c_\Delta$, see Eq \eqref{def:cDelta}.

Owner: NcHaloDensityProfile

Flags: Read / Write

Default value: 4


The “cDelta-fit” property

  “cDelta-fit”               gboolean

Boolean property that controls whether the parameter “cDelta” should be included in a statistical analysis.

Owner: NcHaloDensityProfile

Flags: Read / Write

Default value: FALSE


The “lnXf” property

  “lnXf”                     double

Logarithm of the upper limit of the interval where the projected densities are computed $\ln(X_f)$.

Owner: NcHaloDensityProfile

Flags: Read / Write / Construct

Default value: 9.21034


The “lnXi” property

  “lnXi”                     double

Logarithm of the lower limit of the interval where the projected densities are computed $\ln(X_i)$.

Owner: NcHaloDensityProfile

Flags: Read / Write / Construct

Default value: -9.21034


The “log10MDelta” property

  “log10MDelta”              double

Logarithm base 10 of the cluster mass $M_\Delta$ in units of solar masses $M_\odot$ (ncm_c_mass_solar()) within $r_\Delta$, where $\Delta$ is the over-density, see Eq. \eqref{eq:mrr}.

Owner: NcHaloDensityProfile

Flags: Read / Write

Default value: 14.301


The “log10MDelta-fit” property

  “log10MDelta-fit”          gboolean

Boolean property that controls whether the parameter “log10MDelta” should be included in a statistical analysis.

Owner: NcHaloDensityProfile

Flags: Read / Write

Default value: FALSE


The “mass-def” property

  “mass-def”                 NcHaloDensityProfileMassDef

Background density $\rho_\mathrm{bg}$ used in the mass definition \eqref{eq:mrr}. See the enumerator NcHaloDensityProfileMassDef for more details about the background density definition.

Owner: NcHaloDensityProfile

Flags: Read / Write / Construct Only

Default value: NC_HALO_DENSITY_PROFILE_MASS_DEF_MEAN


The “reltol” property

  “reltol”                   double

Relative tolerance used in the numerical computations.

Owner: NcHaloDensityProfile

Flags: Read / Write / Construct

Allowed values: [2.22045e-16,1]

Default value: 1e-07