NcmC

NcmC — Numerical and physical constants.

Stability Level

Stable, unless otherwise indicated

Functions

double ncm_c_sqrt_1_4pi ()
double ncm_c_sqrt_pi ()
double ncm_c_sqrt_2pi ()
double ncm_c_sqrt_pi_2 ()
double ncm_c_sqrt_3_4pi ()
double ncm_c_ln2 ()
double ncm_c_ln3 ()
double ncm_c_lnpi_4 ()
double ncm_c_ln2pi ()
double ncm_c_lnpi ()
double ncm_c_pi ()
double ncm_c_two_pi_2 ()
double ncm_c_tan_1arcsec ()
double ncm_c_deg2_steradian ()
gdouble ncm_c_degree_to_radian ()
gdouble ncm_c_radian_to_degree ()
gdouble ncm_c_radian_0_2pi ()
gdouble ncm_c_sign_sin ()
gdouble ncm_c_c ()
gdouble ncm_c_h ()
gdouble ncm_c_hbar ()
gdouble ncm_c_fine_struct ()
gdouble ncm_c_kb ()
gdouble ncm_c_G ()
gdouble ncm_c_planck_length ()
gdouble ncm_c_thomson_cs ()
gdouble ncm_c_stefan_boltzmann ()
gdouble ncm_c_magnetic_constant ()
gdouble ncm_c_mass_atomic ()
gdouble ncm_c_mass_e ()
gdouble ncm_c_mass_p ()
gdouble ncm_c_mass_n ()
gdouble ncm_c_mass_ratio_alpha_p ()
gdouble ncm_c_mass_ratio_e_p ()
gdouble ncm_c_Rinf ()
gdouble ncm_c_Ry ()
gdouble ncm_c_eV ()
gdouble ncm_c_year ()
gdouble ncm_c_lightyear ()
gdouble ncm_c_lightyear_pc ()
gdouble ncm_c_Glightyear_Mpc ()
gdouble ncm_c_hc ()
gdouble ncm_c_fine_struct_square ()
gdouble ncm_c_electric_constant ()
gdouble ncm_c_AR ()
gdouble ncm_c_c2 ()
gdouble ncm_c_planck_length2 ()
gdouble ncm_c_rest_energy_atomic ()
gdouble ncm_c_rest_energy_e ()
gdouble ncm_c_rest_energy_p ()
gdouble ncm_c_rest_energy_n ()
gdouble ncm_c_thermal_wl_e ()
gdouble ncm_c_thermal_wl_p ()
gdouble ncm_c_thermal_wl_n ()
gdouble ncm_c_thermal_wn_e ()
gdouble ncm_c_thermal_wn_p ()
gdouble ncm_c_thermal_wn_n ()
gdouble ncm_c_H_reduced_mass ()
gdouble ncm_c_H_reduced_energy ()
gdouble ncm_c_H_bind ()
gdouble ncm_c_mass_1H_u ()
gdouble ncm_c_mass_2H_u ()
gdouble ncm_c_mass_3H_u ()
gdouble ncm_c_mass_3He_u ()
gdouble ncm_c_mass_4He_u ()
gdouble ncm_c_mass_1H ()
gdouble ncm_c_mass_2H ()
gdouble ncm_c_mass_3H ()
gdouble ncm_c_mass_3He ()
gdouble ncm_c_mass_4He ()
gdouble ncm_c_rest_energy_1H ()
gdouble ncm_c_rest_energy_2H ()
gdouble ncm_c_rest_energy_3H ()
gdouble ncm_c_rest_energy_3He ()
gdouble ncm_c_rest_energy_4He ()
gdouble ncm_c_mass_ratio_4He_1H ()
gdouble ncm_c_au ()
gdouble ncm_c_pc ()
gdouble ncm_c_kpc ()
gdouble ncm_c_Mpc ()
gdouble ncm_c_G_mass_solar ()
gdouble ncm_c_mass_solar ()
gdouble ncm_c_HI_ion_wn_1s_2S0_5 ()
gdouble ncm_c_HI_ion_wn_2s_2S0_5 ()
gdouble ncm_c_HI_ion_wn_2p_2P0_5 ()
gdouble ncm_c_HI_ion_wn_2p_2P3_5 ()
gdouble ncm_c_HI_ion_wn_2p_2Pmean ()
gdouble ncm_c_HI_ion_E_1s_2S0_5 ()
gdouble ncm_c_HI_ion_E_2s_2S0_5 ()
gdouble ncm_c_HI_ion_E_2p_2P0_5 ()
gdouble ncm_c_HI_ion_E_2p_2P3_5 ()
gdouble ncm_c_HI_ion_E_2p_2Pmean ()
gdouble ncm_c_HI_Lyman_wn_2s_2S0_5 ()
gdouble ncm_c_HI_Lyman_wn_2p_2P0_5 ()
gdouble ncm_c_HI_Lyman_wn_2p_2P3_5 ()
gdouble ncm_c_HI_Lyman_wn_2p_2Pmean ()
gdouble ncm_c_HI_Lyman_wl_2s_2S0_5 ()
gdouble ncm_c_HI_Lyman_wl_2p_2P0_5 ()
gdouble ncm_c_HI_Lyman_wl_2p_2P3_5 ()
gdouble ncm_c_HI_Lyman_wl_2p_2Pmean ()
gdouble ncm_c_HI_Lyman_wl3_8pi_2s_2S0_5 ()
gdouble ncm_c_HI_Lyman_wl3_8pi_2p_2P0_5 ()
gdouble ncm_c_HI_Lyman_wl3_8pi_2p_2P3_5 ()
gdouble ncm_c_HI_Lyman_wl3_8pi_2p_2Pmean ()
gdouble ncm_c_boltzmann_factor_HI_1s_2S0_5 ()
gdouble ncm_c_boltzmann_factor_HI_2s_2S0_5 ()
gdouble ncm_c_boltzmann_factor_HI_2p_2P0_5 ()
gdouble ncm_c_boltzmann_factor_HI_2p_2P3_5 ()
gdouble ncm_c_boltzmann_factor_HI_2p_2Pmean ()
gdouble ncm_c_HeI_ion_wn_1s_1S0 ()
gdouble ncm_c_HeI_ion_wn_2s_1S0 ()
gdouble ncm_c_HeI_ion_wn_2s_3S1 ()
gdouble ncm_c_HeI_ion_wn_2p_1P1 ()
gdouble ncm_c_HeI_ion_wn_2p_3P0 ()
gdouble ncm_c_HeI_ion_wn_2p_3P1 ()
gdouble ncm_c_HeI_ion_wn_2p_3P2 ()
gdouble ncm_c_HeI_ion_wn_2p_3Pmean ()
gdouble ncm_c_HeI_ion_E_1s_1S0 ()
gdouble ncm_c_HeI_ion_E_2s_1S0 ()
gdouble ncm_c_HeI_ion_E_2s_3S1 ()
gdouble ncm_c_HeI_ion_E_2p_1P1 ()
gdouble ncm_c_HeI_ion_E_2p_3P0 ()
gdouble ncm_c_HeI_ion_E_2p_3P1 ()
gdouble ncm_c_HeI_ion_E_2p_3P2 ()
gdouble ncm_c_HeI_ion_E_2p_3Pmean ()
gdouble ncm_c_HeI_Lyman_wn_2s_1S0 ()
gdouble ncm_c_HeI_Lyman_wn_2s_3S1 ()
gdouble ncm_c_HeI_Lyman_wn_2p_1P1 ()
gdouble ncm_c_HeI_Lyman_wn_2p_3P0 ()
gdouble ncm_c_HeI_Lyman_wn_2p_3P1 ()
gdouble ncm_c_HeI_Lyman_wn_2p_3P2 ()
gdouble ncm_c_HeI_Lyman_wn_2p_3Pmean ()
gdouble ncm_c_HeI_Lyman_wl_2s_1S0 ()
gdouble ncm_c_HeI_Lyman_wl_2s_3S1 ()
gdouble ncm_c_HeI_Lyman_wl_2p_1P1 ()
gdouble ncm_c_HeI_Lyman_wl_2p_3P0 ()
gdouble ncm_c_HeI_Lyman_wl_2p_3P1 ()
gdouble ncm_c_HeI_Lyman_wl_2p_3P2 ()
gdouble ncm_c_HeI_Lyman_wl_2p_3Pmean ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2s_1S0 ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2s_3S1 ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2p_1P1 ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2p_3P0 ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2p_3P1 ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2p_3P2 ()
gdouble ncm_c_HeI_Lyman_wl3_8pi_2p_3Pmean ()
gdouble ncm_c_boltzmann_factor_HeI_1s_1S0 ()
gdouble ncm_c_boltzmann_factor_HeI_2s_1S0 ()
gdouble ncm_c_boltzmann_factor_HeI_2s_3S1 ()
gdouble ncm_c_boltzmann_factor_HeI_2p_1P1 ()
gdouble ncm_c_boltzmann_factor_HeI_2p_3P0 ()
gdouble ncm_c_boltzmann_factor_HeI_2p_3P1 ()
gdouble ncm_c_boltzmann_factor_HeI_2p_3P2 ()
gdouble ncm_c_boltzmann_factor_HeI_2p_3Pmean ()
gdouble ncm_c_HeI_Balmer_wn_2p_1P1_2s_1S0 ()
gdouble ncm_c_HeI_Balmer_wn_2p_3Pmean_2s_3S1 ()
gdouble ncm_c_HeI_Balmer_E_kb_2p_1P1_2s_1S0 ()
gdouble ncm_c_HeI_Balmer_E_kb_2p_3Pmean_2s_3S1 ()
gdouble ncm_c_HeII_ion_wn_1s_2S0_5 ()
gdouble ncm_c_HeII_ion_E_1s_2S0_5 ()
gdouble ncm_c_decay_H_rate_2s_1s ()
gdouble ncm_c_decay_He_rate_2s_1s ()
double ncm_c_stats_1sigma ()
double ncm_c_stats_2sigma ()
double ncm_c_stats_3sigma ()
gdouble ncm_c_hubble_cte_planck6_base ()
gdouble ncm_c_hubble_cte_hst ()
gdouble ncm_c_hubble_radius_hm1_Mpc ()
gdouble ncm_c_hubble_radius_hm1_planck ()
gdouble ncm_c_crit_density_h2 ()
gdouble ncm_c_crit_mass_density_h2 ()
gdouble ncm_c_crit_mass_density_h2_solar_mass_Mpc3 ()
gdouble ncm_c_crit_number_density_p ()
gdouble ncm_c_crit_number_density_n ()
gdouble ncm_c_blackbody_energy_density ()
gdouble ncm_c_blackbody_per_crit_density_h2 ()
gdouble ncm_c_radiation_temp_to_h2Omega_r0 ()

Types and Values

#define NCM_TYPE_C
  NcmC

Object Hierarchy

    GObject
    ╰── NcmC

Includes

#include <numcosmo/math/ncm_c.h>

Description

Mathematical and physical constants and constants manipulation functions.

The sources are:

  • High precision mathematical constants obtained from MPFR.

  • Fundamental constants: 2018 CODATA recommended values, see constants.txt distributed with NumCosmo sources.

  • The atomic weights: Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC). See also from the NIST compilation.

  • Astronomical constants: IAU 2015 resolutions for the astronomical unit ncm_c_au(), parsec ncm_c_pc() and derived constants. See also Luzum 2011.

  • Atomic Spectra: National Institute of Standards and Technology (NIST) Atomic Spectra Standard Reference Database 78 - Version 5.7 (October 2018).

Functions

ncm_c_sqrt_1_4pi ()

double
ncm_c_sqrt_1_4pi (void);

Returns

$\sqrt{1 / (4 \pi)}$.


ncm_c_sqrt_pi ()

double
ncm_c_sqrt_pi (void);

Returns

$\sqrt{\pi}$.


ncm_c_sqrt_2pi ()

double
ncm_c_sqrt_2pi (void);

Returns

$\sqrt{2 \pi}$.


ncm_c_sqrt_pi_2 ()

double
ncm_c_sqrt_pi_2 (void);

Returns

$\sqrt{\pi / 2}$.


ncm_c_sqrt_3_4pi ()

double
ncm_c_sqrt_3_4pi (void);

Returns

$\sqrt{3 / (4 \pi)}$.


ncm_c_ln2 ()

double
ncm_c_ln2 (void);

Returns

$\ln(2)$.


ncm_c_ln3 ()

double
ncm_c_ln3 (void);

Returns

$\ln(3)$.


ncm_c_lnpi_4 ()

double
ncm_c_lnpi_4 (void);

Returns

$\ln(\pi) / 4$.


ncm_c_ln2pi ()

double
ncm_c_ln2pi (void);

Returns

$\ln(2\pi)$.


ncm_c_lnpi ()

double
ncm_c_lnpi (void);

Returns

$\ln(\pi)$.


ncm_c_pi ()

double
ncm_c_pi (void);

Returns

$\pi$.


ncm_c_two_pi_2 ()

double
ncm_c_two_pi_2 (void);

ncm_c_tan_1arcsec ()

double
ncm_c_tan_1arcsec (void);

Returns

$\tan(2 \pi/ (360 \times 60 \times 60))$.


ncm_c_deg2_steradian ()

double
ncm_c_deg2_steradian (void);

The convertion factor from degrees squared to steradian.

Returns

$\pi^2/(180)^2$.


ncm_c_degree_to_radian ()

gdouble
ncm_c_degree_to_radian (const gdouble d);

Parameters

d

angle in degrees

 

Returns

$d \times \pi / 180$.


ncm_c_radian_to_degree ()

gdouble
ncm_c_radian_to_degree (const gdouble r);

Parameters

r

angle in radians

 

Returns

$r \times 180 / \pi$.


ncm_c_radian_0_2pi ()

gdouble
ncm_c_radian_0_2pi (const gdouble r);

Parameters

r

angle in radians

 

Returns

the angle in the interval $[0, 2\pi]$.


ncm_c_sign_sin ()

gdouble
ncm_c_sign_sin (const gdouble r);

Parameters

r

angle in radias

 

Returns

the sign of the value of $\sin(r)$.


ncm_c_c ()

gdouble
ncm_c_c (void);

Using CODATA values, see description.

Returns

Speed of light $c = 299792458.0 \,\left[\mathrm{m}\mathrm{s}^{-1}\right]$.


ncm_c_h ()

gdouble
ncm_c_h (void);

Using CODATA values, see description.

Returns

Planck constant $h = 6.62607015 \times 10^{-34} \,\left[\mathrm{J}\,\mathrm{s}\right]$.


ncm_c_hbar ()

gdouble
ncm_c_hbar (void);

Using CODATA values, see description.

Returns

Planck constant over $2\pi$, $\hbar \equiv h / (2\pi) = 1.054571817 \times 10^{-34} \,\left[\mathrm{J}\,\mathrm{s}\right]$.


ncm_c_fine_struct ()

gdouble
ncm_c_fine_struct (void);

Using CODATA values, see description.

Returns

Fine structure constant $\alpha = 7.2973525693 \times 10^{-3} $.


ncm_c_kb ()

gdouble
ncm_c_kb (void);

Using CODATA values, see description.

Returns

Boltzmann constant $k_\mathrm{B} = 1.380649 \times 10^{-23} \,\left[\mathrm{J}\,\mathrm{K}^{-1}\right]$.


ncm_c_G ()

gdouble
ncm_c_G (void);

Using CODATA values, see description.

Returns

Newton's (or gravitational) constant $\mathrm{G} = 6.67430 \times 10^{-11} \,\left[\mathrm{m}^3\,\mathrm{kg}^{-1}\,\mathrm{s}^{-2}\right]$.


ncm_c_planck_length ()

gdouble
ncm_c_planck_length (void);

Returns

Planck length $l_\mathrm{P} = 1.616255 \times 10^{-35} \,\left[\mathrm{m}\right]$.


ncm_c_thomson_cs ()

gdouble
ncm_c_thomson_cs (void);

Using CODATA values, see description.

Returns

Thomson cross section $\sigma_\mathrm{T} = 0.66524587321 \times 10^{-28} \,\left[\mathrm{m}^2\right]$.


ncm_c_stefan_boltzmann ()

gdouble
ncm_c_stefan_boltzmann (void);

Using CODATA values, see description.

Returns

Stefan Boltzmann constant $\sigma_\mathrm{SB} = 5.670374419 \times 10^{-8} \,\left[\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{K}^{-4}\right]$.


ncm_c_magnetic_constant ()

gdouble
ncm_c_magnetic_constant (void);

Using CODATA values, see description.

Returns

Magnetic constant $\mu_0 = 1.25663706212 \times 10^{-6} \,\left[\mathrm{N}\,\mathrm{A}^{-2}\right]$.


ncm_c_mass_atomic ()

gdouble
ncm_c_mass_atomic (void);

Using CODATA values, see description.

Returns

Atomic mass constant $m_\mathrm{A} = 1.66053906660 \times 10^{-27} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_e ()

gdouble
ncm_c_mass_e (void);

Using CODATA values, see description.

Returns

Electron mass $m_\mathrm{e} = 9.1093837015 \times 10^{-31} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_p ()

gdouble
ncm_c_mass_p (void);

Using CODATA values, see description.

Returns

Proton mass $m_\mathrm{p} = 1.67262192369 \times 10^{-27} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_n ()

gdouble
ncm_c_mass_n (void);

Using CODATA values, see description.

Returns

Neuton mass $m_\mathrm{n} = 1.67492749804 \times 10^{-27} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_ratio_alpha_p ()

gdouble
ncm_c_mass_ratio_alpha_p (void);

Using CODATA values, see description.

Returns

The proton and alpha particle (Helium-4 III) mass ratio $m_\alpha / m_\mathrm{p} = 3.97259969009$.


ncm_c_mass_ratio_e_p ()

gdouble
ncm_c_mass_ratio_e_p (void);

Using CODATA values, see description.

Returns

The electron and proton mass ratio $m_\mathrm{e} / m_\mathrm{p} = 5.44617021487 \times 10^{-4}$.


ncm_c_Rinf ()

gdouble
ncm_c_Rinf (void);

Using CODATA values, see description.

Returns

The Rydberg constant $\mathrm{R}_\infty = 10973731.568160 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_Ry ()

gdouble
ncm_c_Ry (void);

Using CODATA values, see description.

Returns

The Rydberg unity of energy $\mathrm{Ry} = hc\mathrm{R}_\infty = 2.1798723611035 \times 10^{-18} \,\left[\mathrm{J}\right]$.


ncm_c_eV ()

gdouble
ncm_c_eV (void);

Using CODATA values, see description.

Returns

The value of one electron volt $\mathrm{eV} = 1.602176634 \times 10^{-19} \,\left[\mathrm{J}\right]$.


ncm_c_year ()

gdouble
ncm_c_year (void);

One year ($365.25$ days) in seconds.

Returns

$1$ year $365.25 \times 24 \times 60 \times 60 \,\left[\mathrm{s}\right]$.


ncm_c_lightyear ()

gdouble
ncm_c_lightyear (void);

One year times the speed of light ncm_c_c() in meters.

Returns

$1$ light-year $365.25 \times 24 \times 60 \times 60 \times c \,\left[\mathrm{m}\right]$.


ncm_c_lightyear_pc ()

gdouble
ncm_c_lightyear_pc (void);

One light-year in parsecs.

Returns

$1$ light-year $365.25 \times 24 \times 60 \times 60 \times c \,\left[\mathrm{pc}\right]$.


ncm_c_Glightyear_Mpc ()

gdouble
ncm_c_Glightyear_Mpc (void);

One giga light-year in mega parsecs.

Returns

$1$ giga light-year $10^6 \times 365.25 \times 24 \times 60 \times 60 \times c \,\left[\mathrm{Mpc}\right]$.


ncm_c_hc ()

gdouble
ncm_c_hc (void);

Derived from CODATA values, see description.

Returns

Planck constant times the speed of light $hc \,\left[\mathrm{kg}\,\mathrm{m}^3\,\mathrm{s}^{-2}\right]$.


ncm_c_fine_struct_square ()

gdouble
ncm_c_fine_struct_square (void);

Derived from CODATA values, see description.

Returns

The square of the fine struct constant $\alpha^2$.


ncm_c_electric_constant ()

gdouble
ncm_c_electric_constant (void);

Derived from CODATA values, see description.

Returns

Electric constant $\varepsilon_0 = 1 / (\mu_0 c^2) \,\left[\mathrm{F}\,\mathrm{m}^{-1}\right]$.


ncm_c_AR ()

gdouble
ncm_c_AR (void);

Derived from CODATA values, see description.

Returns

Radiation constant AR.


ncm_c_c2 ()

gdouble
ncm_c_c2 (void);

Derived from CODATA values, see description.

Returns

Square of the speed of light $c^2 \,\left[\mathrm{m}^2\,\mathrm{s}^{-2}\right]$.


ncm_c_planck_length2 ()

gdouble
ncm_c_planck_length2 (void);

Derived from CODATA values, see description.

Returns

Square of the Planck length $l_\mathrm{P}^2 \,\left[\mathrm{m}^2\right]$.


ncm_c_rest_energy_atomic ()

gdouble
ncm_c_rest_energy_atomic (void);

Derived from CODATA values, see description.

Returns

Rest energy of one atomic mass $m_\mathrm{A}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_e ()

gdouble
ncm_c_rest_energy_e (void);

Derived from CODATA values, see description.

Returns

Electron's rest energy $m_\mathrm{e}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_p ()

gdouble
ncm_c_rest_energy_p (void);

Derived from CODATA values, see description.

Returns

Proton's rest energy $m_\mathrm{p}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_n ()

gdouble
ncm_c_rest_energy_n (void);

Derived from CODATA values, see description.

Returns

Neutron's rest energy $m_\mathrm{n}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_thermal_wl_e ()

gdouble
ncm_c_thermal_wl_e (void);

Derived from CODATA values, see description.

The electron termal wavelength is $\lambda_\mathrm{e} = \sqrt{2\pi\hbar^2/(m_\mathrm{e}k_\mathrm{B}T)} \,\left[\mathrm{m}\right]$.

Returns

Thermal electron wavelength times the temperature $\lambda_\mathrm{e}\sqrt{T}$.


ncm_c_thermal_wl_p ()

gdouble
ncm_c_thermal_wl_p (void);

Derived from CODATA values, see description.

The proton termal wavelength is $\lambda_\mathrm{p} = \sqrt{2\pi\hbar^2/(m_\mathrm{p}k_\mathrm{B}T)} \,\left[\mathrm{m}\right]$.

Returns

Thermal electron wavelength times the temperature $\lambda_\mathrm{p}\sqrt{T}$.


ncm_c_thermal_wl_n ()

gdouble
ncm_c_thermal_wl_n (void);

Derived from CODATA values, see description.

The neutron termal wavelength is $\lambda_\mathrm{n} = \sqrt{2\pi\hbar^2/(m_\mathrm{n}k_\mathrm{B}T)} \,\left[\mathrm{m}\right]$.

Returns

Thermal electron wavelength times the temperature $\lambda_\mathrm{n}\sqrt{T}$.


ncm_c_thermal_wn_e ()

gdouble
ncm_c_thermal_wn_e (void);

Derived from CODATA values, see description.

The electron termal wavenumber is $k_\mathrm{e} = 1/\lambda_\mathrm{e}$, see ncm_c_thermal_wl_e().

Returns

Thermal eletron wavenumber $k_\mathrm{e}/\sqrt{T}$.


ncm_c_thermal_wn_p ()

gdouble
ncm_c_thermal_wn_p (void);

Derived from CODATA values, see description.

The proton termal wavenumber is $k_\mathrm{p} = 1/\lambda_\mathrm{p}$, see ncm_c_thermal_wl_p().

Returns

Thermal proton wavenumber $k_\mathrm{e}/\sqrt{T}$.


ncm_c_thermal_wn_n ()

gdouble
ncm_c_thermal_wn_n (void);

Derived from CODATA values, see description.

The neutron termal wavenumber is $k_\mathrm{n} = 1/\lambda_\mathrm{n}$, see ncm_c_thermal_wl_n().

Returns

Thermal neutron wavenumber $k_\mathrm{e}/\sqrt{T}$.


ncm_c_H_reduced_mass ()

gdouble
ncm_c_H_reduced_mass (void);

Derived from CODATA values, see description.

Reduced mass for the electron in Hydrogen binding energy calculation, i.e., $m_\mathrm{r} = m_\mathrm{e} / (1 + m_\mathrm{e}/m_\mathrm{p})$

Returns

Electron reduced mass $m_\mathrm{r} \,\left[\mathrm{kg}\right]$.


ncm_c_H_reduced_energy ()

gdouble
ncm_c_H_reduced_energy (void);

Reduced mass times $c^2$, $m_\mathrm{r}c^2$, see ncm_c_H_reduced_mass().

Returns

$m_\mathrm{r}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_H_bind ()

gdouble
ncm_c_H_bind (const gdouble n,
              const gdouble j);

Energy difference from unbounded state to state $(n,\,j)$, i.e., minus the binding energy of the state $(n,\,j)$, calculated from \begin{equation} E^\mathrm{H}_{n,j} = m_\mathrm{e}c^2\left[1 - f(n,j)\right], \end{equation} where \begin{align} f(n, j) &= \left[1+\left(\frac{\alpha}{n - \delta(j)}\right)^2\right]^{-\frac{1}{2}}, \\ \delta(j) &= j+\frac{1}{2} + \sqrt{\left(j+1/2\right)^2 - \alpha^2}. \end{align}

Parameters

n

Principal quantum number

 

j

Total angular momentum

 

Returns

Hydrogen binding energy $E^\mathrm{H}_{n,j}$.


ncm_c_mass_1H_u ()

gdouble
ncm_c_mass_1H_u (void);

Obtained from CIAAW commission of IUPAC, see description.

Returns

Hydrogen-1's mass over one atomic mass $m_\mathrm{1H}/m_\mathrm{A} = 1.00782503223$.


ncm_c_mass_2H_u ()

gdouble
ncm_c_mass_2H_u (void);

Obtained from CIAAW commission of IUPAC, see description.

Returns

Hydrogen-2's mass over one atomic mass $m_\mathrm{2H}/m_\mathrm{A} = 2.01410177812$.


ncm_c_mass_3H_u ()

gdouble
ncm_c_mass_3H_u (void);

Obtained from CIAAW commission of IUPAC, see description.

Returns

Hydrogen-3's mass over one atomic mass $m_\mathrm{3H}/m_\mathrm{A} = 3.0160492779$.


ncm_c_mass_3He_u ()

gdouble
ncm_c_mass_3He_u (void);

Obtained from CIAAW commission of IUPAC, see description.

Returns

Helium-3's mass over one atomic mass $m_\mathrm{3He}/m_\mathrm{A} = 3.0160293201$.


ncm_c_mass_4He_u ()

gdouble
ncm_c_mass_4He_u (void);

Obtained from CIAAW commission of IUPAC, see description.

Returns

Helium-4's mass over one atomic mass $m_\mathrm{4He}/m_\mathrm{A} = 4.00260325413$.


ncm_c_mass_1H ()

gdouble
ncm_c_mass_1H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_1H_u() $\times$ ncm_c_mass_atomic().

Returns

Hydrogen-1's mass $m_\mathrm{1H} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_2H ()

gdouble
ncm_c_mass_2H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_2H_u() $\times$ ncm_c_mass_atomic().

Returns

Hydrogen-2's mass $m_\mathrm{2H} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_3H ()

gdouble
ncm_c_mass_3H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_3H_u() $\times$ ncm_c_mass_atomic().

Returns

Hydrogen-3's mass $m_\mathrm{3H} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_3He ()

gdouble
ncm_c_mass_3He (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_3He_u() $\times$ ncm_c_mass_atomic().

Returns

Helium-3's mass $m_\mathrm{3He} \,\left[\mathrm{kg}\right]$.


ncm_c_mass_4He ()

gdouble
ncm_c_mass_4He (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_4He_u() $\times$ ncm_c_mass_atomic().

Returns

Helium-4's mass $m_\mathrm{4He} \,\left[\mathrm{kg}\right]$.


ncm_c_rest_energy_1H ()

gdouble
ncm_c_rest_energy_1H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_1H_u() $\times$ ncm_c_rest_energy_atomic().

Returns

Hydrogen-1's rest energy $m_\mathrm{1H}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_2H ()

gdouble
ncm_c_rest_energy_2H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_2H_u() $\times$ ncm_c_rest_energy_atomic().

Returns

Hydrogen-2's rest energy $m_\mathrm{2H}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_3H ()

gdouble
ncm_c_rest_energy_3H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_3H_u() $\times$ ncm_c_rest_energy_atomic().

Returns

Hydrogen-3's rest energy $m_\mathrm{3H}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_3He ()

gdouble
ncm_c_rest_energy_3He (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_3He_u() $\times$ ncm_c_rest_energy_atomic().

Returns

Helium-3's rest energy $m_\mathrm{3He}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_rest_energy_4He ()

gdouble
ncm_c_rest_energy_4He (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_4He_u() $\times$ ncm_c_rest_energy_atomic().

Returns

Helium-4's rest energy $m_\mathrm{4He}c^2 \,\left[\mathrm{J}\right]$.


ncm_c_mass_ratio_4He_1H ()

gdouble
ncm_c_mass_ratio_4He_1H (void);

Obtained from CIAAW commission of IUPAC, see description. Calculated using ncm_c_mass_4He_u() / ncm_c_mass_1H_u().

Returns

Helium-4 / Hydrogen-1 mass ratio $m_\mathrm{4He} / m_\mathrm{1H}$.


ncm_c_au ()

gdouble
ncm_c_au (void);

Using IAU 2015 recommendation see description, compatible with NASA JPL recommendations (as in 5 January 2016).

Returns

One astronomical unit in meters $\mathrm{au} = 1.49597870700 \times 10^{11} \,\left[\mathrm{m}\right]$.


ncm_c_pc ()

gdouble
ncm_c_pc (void);

Using IAU 2015 recommendation see description.

Returns

One parsec in meters $\mathrm{pc} = 648000 \mathrm{au} / \pi = 3.0856775814913672789139379577965 \times 10^{16} \,\left[\mathrm{m}\right]$.


ncm_c_kpc ()

gdouble
ncm_c_kpc (void);

Using IAU 2015 recommendation see description.

Returns

One kilo parsec $\mathrm{kpc} = 10^3 \mathrm{pc}$.


ncm_c_Mpc ()

gdouble
ncm_c_Mpc (void);

Using IAU 2015 recommendation see description.

Returns

One mega parsec $\mathrm{Mpc} = 10^6 \mathrm{pc}$.


ncm_c_G_mass_solar ()

gdouble
ncm_c_G_mass_solar (void);

Using IAU 2015 recommendation see description.

IAU recomends the use of a fixed value for the gravitational constant times the solar mass.

Returns

One solar mass times the gravitational constant $(\mathcal{GM})_\odot = 1.3271244 \times 10^{20} \,\left[\mathrm{m}^3\,\mathrm{s}^{-2}\right]$.


ncm_c_mass_solar ()

gdouble
ncm_c_mass_solar (void);

Using IAU 2015 recommendation see description.

As in the recomendation above $\mathrm{M}_\odot = (\mathcal{GM})_\odot / \mathrm{G}$. Here we use the CODATA 2018 value for $G$, see ncm_c_G().

Returns

One solar mass $\mathrm{M}_\odot = (\mathcal{GM})_\odot / \mathrm{G} \,\left[\mathrm{kg}\right]$.


ncm_c_HI_ion_wn_1s_2S0_5 ()

gdouble
ncm_c_HI_ion_wn_1s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for H-I $1s\,{}^2\!S_{1/2}$ state, i.e., $k_{1s\,{}^2\!S_{1/2}}$.

Returns

Hydrogen $1s\,{}^2\!S_{1/2}$ ionization energy wavelength, $k_{1s\,{}^2\!S_{1/2}} = 1.0967877174307 \times 10^{7} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_ion_wn_2s_2S0_5 ()

gdouble
ncm_c_HI_ion_wn_2s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for H-I $2s\,{}^2\!S_{1/2}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2s\,{}^2\!S_{1/2}} = k_{1s\,{}^2\!S_{1/2}} - k_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly}$, see ncm_c_HI_Lyman_wn_2s_2S0_5().

Returns

Hydrogen $2s\,{}^2\!S_{1/2}$ ionization energy wavelength, $k_{2s\,{}^2\!S_{1/2}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_ion_wn_2p_2P0_5 ()

gdouble
ncm_c_HI_ion_wn_2p_2P0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for H-I $2p\,{}^2\!P_{1/2}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^2\!P_{1/2}} = k_{1s\,{}^2\!S_{1/2}} - k_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly}$, see ncm_c_HI_Lyman_wn_2p_2P0_5().

Returns

Hydrogen $2p\,{}^2\!P_{1/2}$ ionization energy wavelength, $k_{2p\,{}^2\!P_{1/2}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_ion_wn_2p_2P3_5 ()

gdouble
ncm_c_HI_ion_wn_2p_2P3_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for H-I $2p\,{}^2\!P_{3/2}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^2\!P_{3/2}} = k_{1s\,{}^2\!S_{3/2}} - k_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly}$, see ncm_c_HI_Lyman_wn_2p_2P3_5().

Returns

Hydrogen $2p\,{}^2\!P_{3/2}$ ionization energy wavelength, $k_{2p\,{}^2\!P_{3/2}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_ion_wn_2p_2Pmean ()

gdouble
ncm_c_HI_ion_wn_2p_2Pmean (void);

NIST compilation of atomic spectra see description.

The mean ionization energy wavenumber for H-I $2p\,{}^2\!P_{1/2}$ and $2p\,{}^2\!P_{3/2}$ states , i.e., $k_{2p\,{}^2\!P_\mathrm{mean}} = (k_{2p\,{}^2\!P_{1/2}} + k_{2p\,{}^2\!P_{3/2}}) / 2$, see ncm_c_HI_Lyman_wn_2p_2Pmean().

Returns

Hydrogen states $2p\,{}^2\!P_{1/2}$ and $2p\,{}^2\!P_{3/2}$ mean ionization energy wavelength, $k_{2p\,{}^2\!P_\mathrm{mean}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_ion_E_1s_2S0_5 ()

gdouble
ncm_c_HI_ion_E_1s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{1s\,{}^2\!S_{1/2}}$, see ncm_c_HI_ion_wn_1s_2S0_5().

Returns

Hydrogen $1s\,{}^2\!S_{1/2}$ ionization energy, $E_{1s\,{}^2\!S_{1/2}} = hc\times{}k_{1s\,{}^2\!S_{1/2}} \,\left[\mathrm{J}\right]$.


ncm_c_HI_ion_E_2s_2S0_5 ()

gdouble
ncm_c_HI_ion_E_2s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2s\,{}^2\!S_{1/2}}$, see ncm_c_HI_ion_wn_2s_2S0_5().

Returns

Hydrogen $2s\,{}^2\!S_{1/2}$ ionization energy, $E_{2s\,{}^2\!S_{1/2}} = hc\times{}k_{2s\,{}^2\!S_{1/2}} \,\left[\mathrm{J}\right]$.


ncm_c_HI_ion_E_2p_2P0_5 ()

gdouble
ncm_c_HI_ion_E_2p_2P0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^2\!P_{1/2}}$, see ncm_c_HI_ion_wn_2p_2P0_5().

Returns

Hydrogen $2p\,{}^2\!P_{1/2}$ ionization energy, $E_{2p\,{}^2\!P_{1/2}} = hc\times{}k_{2p\,{}^2\!P_{1/2}} \,\left[\mathrm{J}\right]$.


ncm_c_HI_ion_E_2p_2P3_5 ()

gdouble
ncm_c_HI_ion_E_2p_2P3_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^2\!P_{3/2}}$, see ncm_c_HI_ion_wn_2p_2P3_5().

Returns

Hydrogen $2p\,{}^2\!P_{3/2}$ ionization energy, $E_{2p\,{}^2\!P_{3/2}} = hc\times{}k_{2p\,{}^2\!P_{3/2}} \,\left[\mathrm{J}\right]$.


ncm_c_HI_ion_E_2p_2Pmean ()

gdouble
ncm_c_HI_ion_E_2p_2Pmean (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^2\!P_\mathrm{mean}}$, see ncm_c_HI_ion_wn_2p_2Pmean().

Returns

Hydrogen $2p\,{}^2\!P_\mathrm{mean}$ ionization energy, $E_{2p\,{}^2\!P_\mathrm{mean}} = hc\times{}k_{2p\,{}^2\!P_\mathrm{mean}} \,\left[\mathrm{J}\right]$.


ncm_c_HI_Lyman_wn_2s_2S0_5 ()

gdouble
ncm_c_HI_Lyman_wn_2s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2s\,{}^2\!S_{1/2} \to 1s\,{}^2\!S_{1/2}$ transition $k_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly}$.

Returns

$k_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly} = 8.22589543992821 \times 10^6 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_Lyman_wn_2p_2P0_5 ()

gdouble
ncm_c_HI_Lyman_wn_2p_2P0_5 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2p\,{}^2\!P_{1/2} \to 1s\,{}^2\!S_{1/2}$ transition $k_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly} = 8.22589191133 \times 10^6 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_Lyman_wn_2p_2P3_5 ()

gdouble
ncm_c_HI_Lyman_wn_2p_2P3_5 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2p\,{}^2\!P_{3/2} \to 1s\,{}^2\!S_{1/2}$ transition $k_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly} = 8.22592850014 \times 10^6 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_Lyman_wn_2p_2Pmean ()

gdouble
ncm_c_HI_Lyman_wn_2p_2Pmean (void);

NIST compilation of atomic spectra see description.

Mean Lyman emission wavenumber for the $2p\,{}^2\!P_{1/2}$ and $2p\,{}^2\!P_{3/2}$ states, $k_{2p\,{}^2\!P_{mean}^\mathrm{Ly}} = (k_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly} + k_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly}) / 2$.

Returns

$k_{2p\,{}^2\!P_{mean}}^\mathrm{Ly} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HI_Lyman_wl_2s_2S0_5 ()

gdouble
ncm_c_HI_Lyman_wl_2s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2s\,{}^2\!S_{1/2} \to 1s\,{}^2\!S_{1/2}$ transition $\lambda_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly} = \left(k_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HI_Lyman_wn_2s_2S0_5().

Returns

Wavelength for the $2s\,{}^2\!S_{1/2} \to 1s\,{}^2\!S_{1/2}$ transition, $\lambda_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HI_Lyman_wl_2p_2P0_5 ()

gdouble
ncm_c_HI_Lyman_wl_2p_2P0_5 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^2\!P_{1/2} \to 1s\,{}^2\!S_{1/2}$ transition $\lambda_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly} = \left(k_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HI_Lyman_wn_2p_2P0_5().

Returns

Wavelength for the $2p\,{}^2\!P_{1/2} \to 1s\,{}^2\!S_{1/2}$ transition, $\lambda_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HI_Lyman_wl_2p_2P3_5 ()

gdouble
ncm_c_HI_Lyman_wl_2p_2P3_5 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^2\!P_{3/2} \to 1s\,{}^2\!S_{1/2}$ transition $\lambda_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly} = \left(k_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HI_Lyman_wn_2p_2P3_5().

Returns

Wavelength for the $2p\,{}^2\!P_{3/2} \to 1s\,{}^2\!S_{1/2}$ transition, $\lambda_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HI_Lyman_wl_2p_2Pmean ()

gdouble
ncm_c_HI_Lyman_wl_2p_2Pmean (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^2\!P_\mathrm{mean} \to 1s\,{}^2\!S_{1/2}$ transition $\lambda_{2p\,{}^2\!P_\mathrm{mean}}^\mathrm{Ly} = \left(k_{2p\,{}^2\!P_\mathrm{mean}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HI_Lyman_wn_2p_2Pmean().

Returns

Wavelength for the $2p\,{}^2\!P_\mathrm{mean} \to 1s\,{}^2\!S_{1/2}$ transition, $\lambda_{2p\,{}^2\!P_\mathrm{mean}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HI_Lyman_wl3_8pi_2s_2S0_5 ()

gdouble
ncm_c_HI_Lyman_wl3_8pi_2s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2s\,{}^2\!S_{1/2}} = \left(\lambda_{2s\,{}^2\!S_{1/2}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HI_Lyman_wl_2s_2S0_5().

Returns

Effective volume $V^\mathrm{Ly}_{2s\,{}^2\!S_{1/2}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HI_Lyman_wl3_8pi_2p_2P0_5 ()

gdouble
ncm_c_HI_Lyman_wl3_8pi_2p_2P0_5 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^2\!P_{1/2}} = \left(\lambda_{2p\,{}^2\!P_{1/2}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HI_Lyman_wl_2p_2P0_5().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^2\!P_{1/2}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HI_Lyman_wl3_8pi_2p_2P3_5 ()

gdouble
ncm_c_HI_Lyman_wl3_8pi_2p_2P3_5 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^2\!P_{3/2}} = \left(\lambda_{2p\,{}^2\!P_{3/2}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HI_Lyman_wl_2p_2P3_5().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^2\!P_{3/2}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HI_Lyman_wl3_8pi_2p_2Pmean ()

gdouble
ncm_c_HI_Lyman_wl3_8pi_2p_2Pmean (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^2\!P_\mathrm{mean}} = \left(\lambda_{2p\,{}^2\!P_\mathrm{mean}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HI_Lyman_wl_2p_2Pmean().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^2\!P_\mathrm{mean}} \,\left[\mathrm{m}^3\right]$.


ncm_c_boltzmann_factor_HI_1s_2S0_5 ()

gdouble
ncm_c_boltzmann_factor_HI_1s_2S0_5 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{1s\,{}^2\!S_{1/2}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{1s\,{}^2\!S_{1/2}} / (k_\mathrm{B}T)\right]$, for the $1s\,{}^2\!S_{1/2}$ hydrogen energy level, see ncm_c_HI_ion_E_1s_2S0_5() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{1s\,{}^2\!S_{1/2}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HI_2s_2S0_5 ()

gdouble
ncm_c_boltzmann_factor_HI_2s_2S0_5 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2s\,{}^2\!S_{1/2}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2s\,{}^2\!S_{1/2}} / (k_\mathrm{B}T)\right]$, for the $2s\,{}^2\!S_{1/2}$ hydrogen energy level, see ncm_c_HI_ion_E_2s_2S0_5() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2s\,{}^2\!S_{1/2}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HI_2p_2P0_5 ()

gdouble
ncm_c_boltzmann_factor_HI_2p_2P0_5 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^2\!P_{1/2}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^2\!P_{1/2}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^2\!P_{1/2}$ hydrogen energy level, see ncm_c_HI_ion_E_2p_2P0_5() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^2\!P_{1/2}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HI_2p_2P3_5 ()

gdouble
ncm_c_boltzmann_factor_HI_2p_2P3_5 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^2\!P_{3/2}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^2\!P_{3/2}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^2\!P_{3/2}$ hydrogen energy level, see ncm_c_HI_ion_E_2p_2P3_5() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^2\!P_{3/2}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HI_2p_2Pmean ()

gdouble
ncm_c_boltzmann_factor_HI_2p_2Pmean (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^2\!P_\mathrm{mean}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^2\!P_\mathrm{mean}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^2\!P_\mathrm{mean}$ hydrogen energy level, see ncm_c_HI_ion_E_2p_2Pmean() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^2\!P_\mathrm{mean}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_HeI_ion_wn_1s_1S0 ()

gdouble
ncm_c_HeI_ion_wn_1s_1S0 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $1s\,{}^1\!S_{0}$ state, i.e., $k_{1s\,{}^1\!S_{0}}$.

Returns

Helium-I $1s\,{}^1\!S_{0}$ ionization energy wavelength, $k_{1s\,{}^1\!S_{0}} = 1.9831066637 \times 10^{7} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2s_1S0 ()

gdouble
ncm_c_HeI_ion_wn_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2s\,{}^1\!S_{0}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2s\,{}^1\!S_{0}} = k_{1s\,{}^1\!S_{0}} - k_{2s\,{}^1\!S_{0}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2s_1S0().

Returns

Helium-I $2s\,{}^1\!S_{0}$ ionization energy wavelength, $k_{2s\,{}^1\!S_{0}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2s_3S1 ()

gdouble
ncm_c_HeI_ion_wn_2s_3S1 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2s\,{}^3\!S_{1}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2s\,{}^3\!S_{1}} = k_{1s\,{}^1\!S_{0}} - k_{2s\,{}^3\!S_{1}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2s_3S1().

Returns

Helium-I $2s\,{}^3\!S_{1}$ ionization energy wavelength, $k_{2s\,{}^3\!S_{1}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2p_1P1 ()

gdouble
ncm_c_HeI_ion_wn_2p_1P1 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2p\,{}^1\!P_{1}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^1\!P_{1}} = k_{1s\,{}^1\!S_{0}} - k_{2p\,{}^1\!P_{1}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2p_1P1().

Returns

Helium-I $2p\,{}^1\!P_{1}$ ionization energy wavelength, $k_{2p\,{}^1\!P_{1}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2p_3P0 ()

gdouble
ncm_c_HeI_ion_wn_2p_3P0 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2p\,{}^3\!P_{0}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^3\!P_{0}} = k_{1s\,{}^1\!S_{0}} - k_{2p\,{}^3\!P_{0}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2p_3P0().

Returns

Helium-I $2p\,{}^3\!P_{0}$ ionization energy wavelength, $k_{2p\,{}^3\!P_{0}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2p_3P1 ()

gdouble
ncm_c_HeI_ion_wn_2p_3P1 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2p\,{}^3\!P_{1}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^3\!P_{1}} = k_{1s\,{}^1\!S_{0}} - k_{2p\,{}^3\!P_{1}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2p_3P1().

Returns

Helium-I $2p\,{}^3\!P_{1}$ ionization energy wavelength, $k_{2p\,{}^3\!P_{1}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2p_3P2 ()

gdouble
ncm_c_HeI_ion_wn_2p_3P2 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2p\,{}^3\!P_{2}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^3\!P_{2}} = k_{1s\,{}^1\!S_{0}} - k_{2p\,{}^3\!P_{2}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2p_3P2().

Returns

Helium-I $2p\,{}^3\!P_{2}$ ionization energy wavelength, $k_{2p\,{}^3\!P_{2}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_wn_2p_3Pmean ()

gdouble
ncm_c_HeI_ion_wn_2p_3Pmean (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-I $2p\,{}^3\!P_\mathrm{mean}$ state calculated from the difference between the first state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^3\!P_{0}} = k_{1s\,{}^1\!S_{0}} - k_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly}$, see ncm_c_HeI_Lyman_wn_2p_3Pmean().

Returns

Helium-I $2p\,{}^3\!P_\mathrm{mean}$ ionization energy wavelength, $k_{2p\,{}^3\!P_\mathrm{mean}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_ion_E_1s_1S0 ()

gdouble
ncm_c_HeI_ion_E_1s_1S0 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{1s\,{}^1\!S_{0}}$, see ncm_c_HeI_ion_wn_1s_1S0().

Returns

Helium-I $1s\,{}^1\!S_{0}$ ionization energy, $E_{1s\,{}^1\!S_{0}} = hc\times{}k_{1s\,{}^1\!S_{0}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2s_1S0 ()

gdouble
ncm_c_HeI_ion_E_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2s\,{}^1\!S_{0}}$, see ncm_c_HeI_ion_wn_2s_1S0().

Returns

Helium-I $2s\,{}^1\!S_{0}$ ionization energy, $E_{2s\,{}^1\!S_{0}} = hc\times{}k_{2s\,{}^1\!S_{0}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2s_3S1 ()

gdouble
ncm_c_HeI_ion_E_2s_3S1 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2s\,{}^3\!S_{1}}$, see ncm_c_HeI_ion_wn_2s_3S1().

Returns

Helium-I $2s\,{}^3\!S_{1}$ ionization energy, $E_{2s\,{}^3\!S_{1}} = hc\times{}k_{2s\,{}^3\!S_{1}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2p_1P1 ()

gdouble
ncm_c_HeI_ion_E_2p_1P1 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^1\!P_{1}}$, see ncm_c_HeI_ion_wn_2p_1P1().

Returns

Helium-I $2p\,{}^1\!P_{1}$ ionization energy, $E_{2p\,{}^1\!P_{1}} = hc\times{}k_{2p\,{}^1\!P_{1}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2p_3P0 ()

gdouble
ncm_c_HeI_ion_E_2p_3P0 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^3\!P_{0}}$, see ncm_c_HeI_ion_wn_2p_3P0().

Returns

Helium-I $2p\,{}^3\!P_{0}$ ionization energy, $E_{2p\,{}^3\!P_{0}} = hc\times{}k_{2p\,{}^3\!P_{0}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2p_3P1 ()

gdouble
ncm_c_HeI_ion_E_2p_3P1 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^3\!P_{1}}$, see ncm_c_HeI_ion_wn_2p_3P1().

Returns

Helium-I $2p\,{}^3\!P_{1}$ ionization energy, $E_{2p\,{}^3\!P_{1}} = hc\times{}k_{2p\,{}^3\!P_{1}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2p_3P2 ()

gdouble
ncm_c_HeI_ion_E_2p_3P2 (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^3\!P_{2}}$, see ncm_c_HeI_ion_wn_2p_3P2().

Returns

Helium-I $2p\,{}^3\!P_{2}$ ionization energy, $E_{2p\,{}^3\!P_{2}} = hc\times{}k_{2p\,{}^3\!P_{2}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_ion_E_2p_3Pmean ()

gdouble
ncm_c_HeI_ion_E_2p_3Pmean (void);

NIST compilation of atomic spectra see description.

Ionization energy calculated from the wavenumber $k_{2p\,{}^3\!P_\mathrm{mean}}$, see ncm_c_HeI_ion_wn_2p_3Pmean().

Returns

Helium-I $2p\,{}^3\!P_\mathrm{mean}$ ionization energy, $E_{2p\,{}^3\!P_\mathrm{mean}} = hc\times{}k_{2p\,{}^3\!P_\mathrm{m}} \,\left[\mathrm{J}\right]$.


ncm_c_HeI_Lyman_wn_2s_1S0 ()

gdouble
ncm_c_HeI_Lyman_wn_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2s\,{}^1\!S_{0} \to 1s\,{}^1\!S_{0}$ transition $k_{2s\,{}^1\!S_{0}}^\mathrm{Ly}$.

Returns

$k_{2s\,{}^1\!S_{0}}^\mathrm{Ly} = 1.66277440141 \times 10^7 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wn_2s_3S1 ()

gdouble
ncm_c_HeI_Lyman_wn_2s_3S1 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2s\,{}^3\!S_{1} \to 1s\,{}^1\!S_{0}$ transition $k_{2s\,{}^3\!S_{1}}^\mathrm{Ly}$.

Returns

$k_{2s\,{}^3\!S_{1}}^\mathrm{Ly} = 1.598559743297 \times 10^7 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wn_2p_1P1 ()

gdouble
ncm_c_HeI_Lyman_wn_2p_1P1 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2p\,{}^1\!P_{1} \to 1s\,{}^1\!S_{0}$ transition $k_{2p\,{}^1\!P_{1}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^1\!P_{1}}^\mathrm{Ly} = 1.71134896946 \times 10^7 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wn_2p_3P0 ()

gdouble
ncm_c_HeI_Lyman_wn_2p_3P0 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2p\,{}^3\!P_{0} \to 1s\,{}^1\!S_{0}$ transition $k_{2p\,{}^3\!P_{0}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^3\!P_{0}}^\mathrm{Ly} = 1.690878308131 \times 10^7 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wn_2p_3P1 ()

gdouble
ncm_c_HeI_Lyman_wn_2p_3P1 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2p\,{}^3\!P_{1} \to 1s\,{}^1\!S_{0}$ transition $k_{2p\,{}^3\!P_{1}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^3\!P_{1}}^\mathrm{Ly} = 1.690868428979 \times 10^7 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wn_2p_3P2 ()

gdouble
ncm_c_HeI_Lyman_wn_2p_3P2 (void);

NIST compilation of atomic spectra see description.

Lyman emission wavenumber for the $2p\,{}^3\!P_{2} \to 1s\,{}^1\!S_{0}$ transition $k_{2p\,{}^3\!P_{2}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^3\!P_{2}}^\mathrm{Ly} = 1.690867664725 \times 10^7 \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wn_2p_3Pmean ()

gdouble
ncm_c_HeI_Lyman_wn_2p_3Pmean (void);

NIST compilation of atomic spectra see description.

Mean Lyman emission wavenumber for the $2p\,{}^3\!P_{*}$, i.e., $k_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly} = \left(k_{2p\,{}^3\!P_{0}}^\mathrm{Ly} + k_{2p\,{}^3\!P_{1}}^\mathrm{Ly} + k_{2p\,{}^3\!P_{2}}^\mathrm{Ly}\right) / 3$. See ncm_c_HeI_Lyman_wn_2p_3P0(), ncm_c_HeI_Lyman_wn_2p_3P1() and ncm_c_HeI_Lyman_wn_2p_3P2().

Returns

$k_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Lyman_wl_2s_1S0 ()

gdouble
ncm_c_HeI_Lyman_wl_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2s\,{}^1\!S_{0} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2s\,{}^1\!S_{0}}^\mathrm{Ly} = \left(k_{2s\,{}^1\!S_{0}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2s_1S0().

Returns

Wavelength for the $2s\,{}^1\!S_{0} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2s\,{}^1\!S_{0}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl_2s_3S1 ()

gdouble
ncm_c_HeI_Lyman_wl_2s_3S1 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2s\,{}^3\!S_{1} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2s\,{}^3\!S_{1}}^\mathrm{Ly} = \left(k_{2s\,{}^3\!S_{1}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2s_3S1().

Returns

Wavelength for the $2s\,{}^3\!S_{1} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2s\,{}^3\!S_{1}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl_2p_1P1 ()

gdouble
ncm_c_HeI_Lyman_wl_2p_1P1 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^1\!P_{1} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2p\,{}^1\!P_{1}}^\mathrm{Ly} = \left(k_{2p\,{}^1\!P_{1}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2p_1P1().

Returns

Wavelength for the $2p\,{}^1\!P_{1} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2p\,{}^1\!P_{1}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl_2p_3P0 ()

gdouble
ncm_c_HeI_Lyman_wl_2p_3P0 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^3\!P_{0} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2p\,{}^3\!P_{0}}^\mathrm{Ly} = \left(k_{2p\,{}^3\!P_{0}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2p_3P0().

Returns

Wavelength for the $2p\,{}^3\!P_{0} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2p\,{}^3\!P_{0}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl_2p_3P1 ()

gdouble
ncm_c_HeI_Lyman_wl_2p_3P1 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^3\!P_{1} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2p\,{}^3\!P_{1}}^\mathrm{Ly} = \left(k_{2p\,{}^3\!P_{1}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2p_3P1().

Returns

Wavelength for the $2p\,{}^3\!P_{1} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2p\,{}^3\!P_{1}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl_2p_3P2 ()

gdouble
ncm_c_HeI_Lyman_wl_2p_3P2 (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^3\!P_{2} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2p\,{}^3\!P_{2}}^\mathrm{Ly} = \left(k_{2p\,{}^3\!P_{2}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2p_3P2().

Returns

Wavelength for the $2p\,{}^3\!P_{2} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2p\,{}^3\!P_{2}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl_2p_3Pmean ()

gdouble
ncm_c_HeI_Lyman_wl_2p_3Pmean (void);

NIST compilation of atomic spectra see description.

Wavelength for the $2p\,{}^3\!P_\mathrm{mean} \to 1s\,{}^1\!S_{0}$ transition $\lambda_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly} = \left(k_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly}\right)^{-1}$, see ncm_c_HeI_Lyman_wn_2p_3Pmean().

Returns

Wavelength for the $2p\,{}^3\!P_\mathrm{mean} \to 1s\,{}^1\!S_{0}$ transition, $\lambda_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly} \,\left[\mathrm{m}\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2s_1S0 ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2s\,{}^1\!S_{0}} = \left(\lambda_{2s\,{}^1\!S_{0}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2s_1S0().

Returns

Effective volume $V^\mathrm{Ly}_{2s\,{}^1\!S_{0}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2s_3S1 ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2s_3S1 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2s\,{}^3\!S_{1}} = \left(\lambda_{2s\,{}^3\!S_{1}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2s_3S1().

Returns

Effective volume $V^\mathrm{Ly}_{2s\,{}^3\!S_{1}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2p_1P1 ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2p_1P1 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^1\!P_{1}} = \left(\lambda_{2p\,{}^1\!P_{1}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2p_1P1().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^1\!P_{1}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2p_3P0 ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2p_3P0 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^3\!P_{0}} = \left(\lambda_{2p\,{}^3\!P_{0}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2p_3P0().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^3\!P_{0}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2p_3P1 ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2p_3P1 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^3\!P_{1}} = \left(\lambda_{2p\,{}^3\!P_{1}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2p_3P1().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^3\!P_{1}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2p_3P2 ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2p_3P2 (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^3\!P_{2}} = \left(\lambda_{2p\,{}^3\!P_{2}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2p_3P2().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^3\!P_{2}} \,\left[\mathrm{m}^3\right]$.


ncm_c_HeI_Lyman_wl3_8pi_2p_3Pmean ()

gdouble
ncm_c_HeI_Lyman_wl3_8pi_2p_3Pmean (void);

NIST compilation of atomic spectra see description.

Effective volume of the Lyman wavelength $V^\mathrm{Ly}_{2p\,{}^3\!P_\mathrm{mean}} = \left(\lambda_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly}\right)^{3} / (8\pi)$, see ncm_c_HeI_Lyman_wl_2p_3Pmean().

Returns

Effective volume $V^\mathrm{Ly}_{2p\,{}^3\!P_\mathrm{mean}} \,\left[\mathrm{m}^3\right]$.


ncm_c_boltzmann_factor_HeI_1s_1S0 ()

gdouble
ncm_c_boltzmann_factor_HeI_1s_1S0 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{1s\,{}^1\!S_{0}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{1s\,{}^1\!S_{0}} / (k_\mathrm{B}T)\right]$, for the $1s\,{}^1\!S_{0}$ helium energy level, see ncm_c_HeI_ion_E_1s_1S0() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{1s\,{}^1\!S_{0}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2s_1S0 ()

gdouble
ncm_c_boltzmann_factor_HeI_2s_1S0 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2s\,{}^1\!S_{0}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2s\,{}^1\!S_{0}} / (k_\mathrm{B}T)\right]$, for the $2s\,{}^1\!S_{0}$ helium energy level, see ncm_c_HeI_ion_E_2s_1S0() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2s\,{}^1\!S_{0}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2s_3S1 ()

gdouble
ncm_c_boltzmann_factor_HeI_2s_3S1 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2s\,{}^3\!S_{1}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2s\,{}^3\!S_{1}} / (k_\mathrm{B}T)\right]$, for the $2s\,{}^3\!S_{1}$ helium energy level, see ncm_c_HeI_ion_E_2s_3S1() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2s\,{}^3\!S_{1}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2p_1P1 ()

gdouble
ncm_c_boltzmann_factor_HeI_2p_1P1 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^1\!P_{1}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^1\!P_{1}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^1\!P_{1}$ helium energy level, see ncm_c_HeI_ion_E_2p_1P1() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^1\!P_{1}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2p_3P0 ()

gdouble
ncm_c_boltzmann_factor_HeI_2p_3P0 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^3\!P_{0}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^3\!P_{0}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^3\!P_{0}$ helium energy level, see ncm_c_HeI_ion_E_2p_3P0() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^3\!P_{0}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2p_3P1 ()

gdouble
ncm_c_boltzmann_factor_HeI_2p_3P1 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^3\!P_{1}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^3\!P_{1}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^3\!P_{1}$ helium energy level, see ncm_c_HeI_ion_E_2p_3P1() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^3\!P_{1}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2p_3P2 ()

gdouble
ncm_c_boltzmann_factor_HeI_2p_3P2 (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^3\!P_{2}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^3\!P_{2}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^3\!P_{2}$ helium energy level, see ncm_c_HeI_ion_E_2p_3P2() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^3\!P_{2}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_boltzmann_factor_HeI_2p_3Pmean ()

gdouble
ncm_c_boltzmann_factor_HeI_2p_3Pmean (const gdouble T);

NIST compilation of atomic spectra see description.

Calculates the Boltzmann factor $B_{2p\,{}^3\!P_\mathrm{mean}}(T) = k_\mathrm{e}^3 T^{-3/2}\,\exp\left[-E_{2p\,{}^3\!P_\mathrm{mean}} / (k_\mathrm{B}T)\right]$, for the $2p\,{}^3\!P_\mathrm{mean}$ helium energy level, see ncm_c_HeI_ion_E_2p_3Pmean() and ncm_c_thermal_wn_e().

Parameters

T

temperature $T$

 

Returns

Boltzmann factor $B_{2p\,{}^3\!P_\mathrm{mean}}(T) \,\left[\mathrm{m}^3\,\mathrm{K}^{-3/2}\right]$.


ncm_c_HeI_Balmer_wn_2p_1P1_2s_1S0 ()

gdouble
ncm_c_HeI_Balmer_wn_2p_1P1_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Balmer emission wavenumber for the $2p\,{}^1\!P_{1} \to 2s\,{}^1\!S_{0}$ transition $k_{2p\,{}^1\!P_{1}}^{2s\,{}^1\!S_{0}}$, calculated from the difference between the Lyman lines $2s\,{}^1\!S_{0}$ state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^1\!P_{1}}^{2s\,{}^1\!S_{0}} = k_{2p\,{}^1\!P_{1}}^\mathrm{Ly} - k_{2s\,{}^1\!S_{0}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^1\!P_{1}}^{2s\,{}^1\!S_{0}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Balmer_wn_2p_3Pmean_2s_3S1 ()

gdouble
ncm_c_HeI_Balmer_wn_2p_3Pmean_2s_3S1 (void);

NIST compilation of atomic spectra see description.

Balmer emission wavenumber for the $2p\,{}^3\!P_\mathrm{mean} \to 2s\,{}^3\!S_{1}$ transition $k_{2p\,{}^3\!P_\mathrm{mean}}^{2s\,{}^3\!S_{1}}$, calculated from the difference between the Lyman lines $2s\,{}^1\!S_{0}$ state and the corresponding Lyman wavenumber, i.e., $k_{2p\,{}^3\!P_\mathrm{mean}}^{2s\,{}^3\!S_{1}} = k_{2p\,{}^3\!P_\mathrm{mean}}^\mathrm{Ly} - k_{2s\,{}^3\!S_{1}}^\mathrm{Ly}$.

Returns

$k_{2p\,{}^3\!P_\mathrm{mean}}^{2s\,{}^3\!S_{1}} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeI_Balmer_E_kb_2p_1P1_2s_1S0 ()

gdouble
ncm_c_HeI_Balmer_E_kb_2p_1P1_2s_1S0 (void);

NIST compilation of atomic spectra see description.

Balmer emission energy $E_{2p\,{}^1\!P_{1}}^{2s\,{}^1\!S_{0}} = hc\times{}k_{2p\,{}^1\!P_{1}}^{2s\,{}^1\!S_{0}}$ over $k_\mathrm{B}$.

Returns

$E_{2p\,{}^1\!P_{1}}^{2s\,{}^1\!S_{0}} / k_\mathrm{B}$.


ncm_c_HeI_Balmer_E_kb_2p_3Pmean_2s_3S1 ()

gdouble
ncm_c_HeI_Balmer_E_kb_2p_3Pmean_2s_3S1
                               (void);

NIST compilation of atomic spectra see description.

Balmer emission energy $E_{2p\,{}^3\!P_\mathrm{mean}}^{2s\,{}^3\!S_{1}} = hc\times{}k_{2p\,{}^3\!P_\mathrm{mean}}^{2s\,{}^3\!S_{1}}$ over $k_\mathrm{B}$.

Returns

$E_{2p\,{}^3\!P_\mathrm{mean}}^{2s\,{}^3\!S_{1}} / k_\mathrm{B}$.


ncm_c_HeII_ion_wn_1s_2S0_5 ()

gdouble
ncm_c_HeII_ion_wn_1s_2S0_5 (void);

NIST compilation of atomic spectra see description.

Ionization energy wavenumber for He-II $1s\,{}^2\!S_{1/2}$ state, i.e., $k_{1s\,{}^2\!S_{1/2}}$.

Returns

Helium-II $1s\,{}^2\!S_{1/2}$ ionization energy wavelength, $k_{1s\,{}^2\!S_{1/2}} = 1.0967877174307 \times 10^{7} \,\left[\mathrm{m}^{-1}\right]$.


ncm_c_HeII_ion_E_1s_2S0_5 ()

gdouble
ncm_c_HeII_ion_E_1s_2S0_5 (void);

Ionization energy for He-II $1s\,{}^2\!S_{1/2}$ state, i.e., $E_{1s\,{}^2\!S_{1/2}} = hc \times k_{1s\,{}^2\!S_{1/2}}$.

Returns

Helium-II $1s\,{}^2\!S_{1/2}$ ionization energy $E_{1s\,{}^2\!S_{1/2}} \,\left[\mathrm{J}\right]$.


ncm_c_decay_H_rate_2s_1s ()

gdouble
ncm_c_decay_H_rate_2s_1s (void);

Theoretical value for the two photons decay rate for Hydrogen $2\mathrm{s} \to 1\mathrm{s}$ states Goldman 1989.

Returns

Decay rate of Hydrogen from $\Lambda_{2\mathrm{s} \to 1\mathrm{s}} = 8.2245809 \,\left[\mathrm{s}^{-1}\right]$.


ncm_c_decay_He_rate_2s_1s ()

gdouble
ncm_c_decay_He_rate_2s_1s (void);

Theoretical value for the two photons decay rate for Helium $2\mathrm{s} \to 1\mathrm{s}$ states Drake 1969.

Returns

Decay rate of Helium from $\Lambda_{2\mathrm{s} \to 1\mathrm{s}} = 51.3 \,\left[\mathrm{s}^{-1}\right]$.


ncm_c_stats_1sigma ()

double
ncm_c_stats_1sigma (void);

The integral of a Gaussian distribution with mean $\mu$ and standard deviation $\sigma$ in $(\mu - 1 \sigma, \mu + 1 \sigma)$.

Returns

$P (\mu - 1 \sigma, \mu + 1 \sigma)$


ncm_c_stats_2sigma ()

double
ncm_c_stats_2sigma (void);

The integral of a Gaussian distribution with mean $\mu$ and standard deviation $\sigma$ in $(\mu - 2 \sigma, \mu + 2 \sigma)$.

Returns

$P (\mu - 2 \sigma, \mu + 2 \sigma)$


ncm_c_stats_3sigma ()

double
ncm_c_stats_3sigma (void);

The integral of a Gaussian distribution with mean $\mu$ and standard deviation sigma in $(\mu - 3 \sigma, \mu + 3 \sigma)$.

Returns

$P (\mu - 3 \sigma, \mu + 3 \sigma)$


ncm_c_hubble_cte_planck6_base ()

gdouble
ncm_c_hubble_cte_planck6_base (void);

Planck VI Hubble constant base-$\Lambda$CDM model TT,TE,EE$+$lowE$+$lensing final result. See Planck Collaboration (2018) [arXiv].

Returns

$H_0 = 67.36 \left[\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}\right]$.


ncm_c_hubble_cte_hst ()

gdouble
ncm_c_hubble_cte_hst (void);

HST Hubble constant final result. See Freedman (2001) [arXiv].

Returns

$H_0 = 72 \left[\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}\right]$.


ncm_c_hubble_radius_hm1_Mpc ()

gdouble
ncm_c_hubble_radius_hm1_Mpc (void);

Hubble radius in units of $\mathsf{h}^{-1} \, \text{Mpc}$ defined as \begin{equation} R_H h^{-1} = \frac{c}{100 \mathsf{h} \, \text{km} \, \text{sec}^{-1} \, \text{Mpc}^{-1}} \, , \end{equation} where $c$ is the speed of light (ncm_c_c()). Calculated using ncm_c_c() $/$ $10^{5}$.

Returns

Hubble radius $R_H \mathsf{h}^{-1} \left[\text{Mpc}\right]$.


ncm_c_hubble_radius_hm1_planck ()

gdouble
ncm_c_hubble_radius_hm1_planck (void);

Hubble radius in units of $\mathsf{h}^{-1} \, l_{\text{p}}$. Calculated using ncm_c_hubble_radius_hm1_Mpc() $\times$ ncm_c_Mpc() $/$ ncm_c_planck_length().

Returns

Hubble radius $R_H \mathsf{h}^{-1} \left[l_\text{p}\right]$.


ncm_c_crit_density_h2 ()

gdouble
ncm_c_crit_density_h2 (void);

The critical density is defined as \begin{equation} \rho_{\mathrm{crit}0} = \frac{3 c^2 H_0^2}{8\pi G}, \end{equation} where $G$ is the gravitational constant (ncm_c_G()), $c$ is the speed of light (ncm_c_c()) and $H_0$ is the Hubble parameter, $$H_0 = 100 \times \mathsf{h} \,\left[\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}\right].$$

Returns

Critical density over $\mathsf{h}^2$, $$\frac{\rho_{\mathrm{crit}0}}{\mathsf{h}^2} \left[\frac{\text{kg}}{\text{m}^3} \frac{\text{m}^2}{\text{s}^2}\right].$$


ncm_c_crit_mass_density_h2 ()

gdouble
ncm_c_crit_mass_density_h2 (void);

This function computes the critical mass density over $\mathsf{h}^2 \times c^2$.

Returns

Critical mass density over $\mathsf{h}^2 \times c^2$, $$\frac{\rho_{\mathrm{crit}0}}{c^2\mathsf{h}^2} \,\left[\frac{\text{kg}}{\text{m}^3}\right].$$


ncm_c_crit_mass_density_h2_solar_mass_Mpc3 ()

gdouble
ncm_c_crit_mass_density_h2_solar_mass_Mpc3
                               (void);

This function computes the critical mass density in units of solar mass $M_\odot$ and Mpc.

Returns

Critical mass density in $M_\odot$ and Mpc units $\frac{\rho_{\mathrm{crit}0}}{\mathsf{h}^2 M_\odot} \left(1 \mathrm{Mpc}\right)^3$.


ncm_c_crit_number_density_p ()

gdouble
ncm_c_crit_number_density_p (void);

This function computes the proton number density in units of its rest energy. Calculated using ncm_c_crit_density_h2() $/$ ncm_c_rest_energy_p().

Returns

Critical proton number density in units of its rest mass.


ncm_c_crit_number_density_n ()

gdouble
ncm_c_crit_number_density_n (void);

This function computes the neutron number density in units of its rest energy. Calculated using ncm_c_crit_density_h2() $/$ ncm_c_rest_energy_n().

Returns

Critical neutron number density in units of its rest mass.


ncm_c_blackbody_energy_density ()

gdouble
ncm_c_blackbody_energy_density (void);

This functions returns the black body energy density divided by $T^4$. Defined as \begin{equation} \frac{\rho_{\text{BL}}}{T^4} = \frac{8\pi^2k_{\text{b}}^4}{15 \left( hc \right)^3}, \end{equation} where $\rho_{\text{BL}}$ is the black body energy density, $T$ is the temperature, $k_{\text{b}}$ is the Boltzmann constant (ncm_c_kb()), $h$ is the Planck constant (ncm_c_h()) and $c$ is the speed of light (ncm_c_c()).

Returns

Blackbody energy density in $\left[ \text{J} \, \text{m}^{-3} \, \text{K}^{-4} \right]$units.


ncm_c_blackbody_per_crit_density_h2 ()

gdouble
ncm_c_blackbody_per_crit_density_h2 (void);

This functions returns ncm_c_blackbody_energy_density() $/$ ncm_c_crit_density_h2().

Returns

Blackbody energy density over critical density times $\mathsf{h}^2$.


ncm_c_radiation_temp_to_h2Omega_r0 ()

gdouble
ncm_c_radiation_temp_to_h2Omega_r0 (const gdouble T);

Parameters

T

temperature $T$

 

Returns

ncm_c_blackbody_per_crit_density_h2() $\times$ $T^4$.

Types and Values

NCM_TYPE_C

#define NCM_TYPE_C (ncm_c_get_type ())

NcmC

typedef struct _NcmC NcmC;