Top |
enum | NcHICosmoImpl |
#define | NC_HICOSMO_IMPL_FLAG_RH_Mpc |
#define | NC_HICOSMO_IMPL_FLAG_RH_planck |
#define | NC_HICOSMO_IMPL_FLAG_Omega_k0 |
#define | NC_HICOSMO_IMPL_FLAG_h |
#define | NC_HICOSMO_IMPL_FLAG_h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_b0h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_c0h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_g0h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_nu0h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_mnu0h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_m0h2 |
#define | NC_HICOSMO_IMPL_FLAG_Omega_r0h2 |
#define | NC_HICOSMO_IMPL_FLAG_H_Yp |
#define | NC_HICOSMO_IMPL_FLAG_XHe |
#define | NC_HICOSMO_IMPL_FLAG_H |
#define | NC_HICOSMO_IMPL_FLAG_dH_dz |
#define | NC_HICOSMO_IMPL_FLAG_E |
#define | NC_HICOSMO_IMPL_FLAG_Em2 |
#define | NC_HICOSMO_IMPL_FLAG_q |
#define | NC_HICOSMO_IMPL_FLAG_j |
#define | NC_HICOSMO_IMPL_FLAG_wec |
#define | NC_HICOSMO_IMPL_FLAG_dec |
#define | NC_HICOSMO_DEFAULT_PARAMS_RELTOL |
#define | NC_HICOSMO_DEFAULT_PARAMS_ABSTOL |
#define | NC_HICOSMO_OMEGA_K0_LIMIT |
GFlags ╰── NcHICosmoImpl GObject ╰── NcmModel ╰── NcHICosmo ├── NcHICosmoVexp ├── NcHICosmoDE ├── NcHICosmoGCG ├── NcHICosmoIDEM2 ├── NcHICosmoLCDM ├── NcHICosmoQConst ├── NcHICosmoQGRW ├── NcHICosmoQGW ├── NcHICosmoQLinear ├── NcHICosmoQRBF ╰── NcHICosmoQSpline
void (*NcHICosmoFuncMassNuInfo) (NcHICosmo *cosmo
,const guint nu_i
,gdouble *mass_eV
,gdouble *T_0
,gdouble *xi
,gdouble *g
);
void (*NcHICosmoGetBGVar) (NcHICosmo *cosmo
,const gdouble t
,NcHIPertBGVar *bg_var
);
void nc_hicosmo_set_H0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
Sets the implementation of H0 to f
.
[skip]
void nc_hicosmo_set_Omega_b0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_c0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_g0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_nu0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_mnu0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Press_mnu0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_mnu0_n_impl (NcHICosmoClass *model_class
,NcHICosmoVFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Press_mnu0_n_impl (NcHICosmoClass *model_class
,NcHICosmoVFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_m0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_r0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Omega_t0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_T_gamma0_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_Yp_4He_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_z_lss_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_as_drag_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_xb_impl (NcHICosmoClass *model_class
,NcHICosmoFunc0 f
);
FIXME
[skip]
void nc_hicosmo_set_E2Omega_b_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Baryonic density $E^2\Omega_{b} = \rho_b(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_c_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Cold dark matter density $E^2\Omega_{c} = \rho_c(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_g_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Photons density $E^2\Omega_{\gamma} = \rho_\gamma(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_nu_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Ultra-relativistic neutrinos density $E^2\Omega_{\nu} = \rho_\nu(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_mnu_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Massive neutrinos density $E^2\Omega_{m\nu} = \rho_{m\nu}(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Press_mnu_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Massive neutrinos density $E^2P_{m\nu} = p_{m\nu}(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_mnu_n_impl (NcHICosmoClass *model_class
,NcHICosmoVFunc1Z f
);
Massive neutrinos density $E^2\Omega_{m\nu,n} = \rho_{m\nu,n}(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Press_mnu_n_impl (NcHICosmoClass *model_class
,NcHICosmoVFunc1Z f
);
Massive neutrinos density $E^2P_{m\nu,n} = p_{m\nu,n}(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_m_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Total matter density $E^2\Omega_{m} = \rho_m(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_r_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Total radiation density $\Omega_{r} = \rho_r(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2Omega_t_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Total density $E2\Omega_{t0} = \rho_t(z) / \rho_{\mathrm{crit}0}$.
[skip]
void nc_hicosmo_set_E2_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Normalized Hubble function squared, $E^2(z)$.
[skip]
void nc_hicosmo_set_dE2_dz_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
First derivative with respect to the redshift of the normalized Hubble function squared, $\frac{dE^2(z)}{dz}$.
[skip]
void nc_hicosmo_set_d2E2_dz2_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
Second derivative with respect to the redshift of the normalized Hubble function squared, $\frac{d^2E^2(z)}{dz^2}$.
[skip]
void nc_hicosmo_set_bgp_cs2_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
FIXME
[skip]
void nc_hicosmo_set_Dc_impl (NcHICosmoClass *model_class
,NcHICosmoFunc1Z f
);
FIXME
[skip]
void nc_hicosmo_set_NMassNu_impl (NcHICosmoClass *model_class
,NcHICosmoFuncNMassNu f
);
FIXME
[skip]
void nc_hicosmo_set_MassNuInfo_impl (NcHICosmoClass *model_class
,NcHICosmoFuncMassNuInfo f
);
FIXME
[skip]
void nc_hicosmo_set_get_bg_var_impl (NcHICosmoClass *model_class
,NcHICosmoGetBGVar f
);
FIXME
[skip]
NcHICosmo *
nc_hicosmo_ref (NcHICosmo *cosmo
);
Increases the reference count of cosmo
by one.
void
nc_hicosmo_free (NcHICosmo *cosmo
);
Decreases the reference count of cosmo
by one.
void
nc_hicosmo_clear (NcHICosmo **cosmo
);
The reference count of cosmo
is decreased and the pointer is set to NULL.
void
nc_hicosmo_log_all_models (GType parent
);
Logs all models descending from parent
.
gdouble nc_hicosmo_zt (NcHICosmo *cosmo
,const gdouble z_max
);
Computes the deceleration-acceleration transition redshift, $z_t$ (find numerically the first root of $q(z)$ in the interval $[0,z_\mathrm{max}]$). If $z_t$ is not found, i.e., $q(z) \neq 0$ in the entire redshift interval, the function returns NAN.
Redshift interval: $[0.0, z_max
]$.
void nc_hicosmo_mqE2_max (NcHICosmo *cosmo
,const gdouble z_max
,gdouble *zm
,gdouble *mqE2m
);
Computes the maximum of $-qE^2$ in the redshift interval: $[0.0, z_max
]$.
void nc_hicosmo_dec_min (NcHICosmo *cosmo
,const gdouble z_max
,gdouble *zm
,gdouble *decm
);
Computes the maximum of dec (nc_hicosmo_dec()
) in the redshift interval: $[0.0, z_max
]$.
cosmo |
||
z_max |
maximum redshift $z_\mathrm{max}$ |
|
zm |
redshift of the maximum $z_m$. |
[out] |
decm |
the value of |
[out] |
void nc_hicosmo_q_min (NcHICosmo *cosmo
,const gdouble z_max
,gdouble *zm
,gdouble *qm
);
Computes the maximum of $q(z)$ (nc_hicosmo_q()
) in the redshift interval: $[0.0, z_max
]$.
gdouble
nc_hicosmo_H0 (NcHICosmo *cosmo
);
The value of the Hubble constant in unit of $\mathrm{m}\,\mathrm{s}^{-1}\,\mathrm{kpc}^{-1}$,
see ncm_c_kpc()
.
[virtual H0]
gdouble
nc_hicosmo_RH_Mpc (NcHICosmo *cosmo
);
Calculates the Hubble radius in unit of Mpc, i.e., $R_H = (c / (H_0 \times 1\,\mathrm{Mpc}))$.
gdouble
nc_hicosmo_RH_planck (NcHICosmo *cosmo
);
Calculates the Hubble radius in unit of
Mpc, i.e., $R_H = (c / (H_0 \times l_\mathrm{planck}))$.
See ncm_c_planck_length()
.
gdouble
nc_hicosmo_h (NcHICosmo *cosmo
);
Reduced Hubble constant, $h \equiv H_0 / (1\times\mathrm{m}\mathrm{s}^{-1}\mathrm{kpc}^{-1})$.
gdouble
nc_hicosmo_h2 (NcHICosmo *cosmo
);
Reduced Hubble constant [nc_hicosmo_h()
] squared $h^2$.
gdouble
nc_hicosmo_Omega_b0 (NcHICosmo *cosmo
);
Dimensionless baryon density today $\Omega_{b0} = \rho_{b0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_b0]
gdouble
nc_hicosmo_Omega_c0 (NcHICosmo *cosmo
);
Dimensionless cold dark matter density today $\Omega_{c0} = \rho_{c0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_c0]
gdouble
nc_hicosmo_Omega_g0 (NcHICosmo *cosmo
);
Dimensionless photon density today $\Omega_{\gamma0} = \rho_{\gamma0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_g0]
gdouble
nc_hicosmo_Omega_nu0 (NcHICosmo *cosmo
);
Dimensionless relativistic neutrinos density today $\Omega_{\nu0} = \rho_{\nu0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_nu0]
gdouble
nc_hicosmo_Omega_mnu0 (NcHICosmo *cosmo
);
Dimensionless massive neutrinos density today $\Omega_{m\nu0} = \rho_{m\nu0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_mnu0]
gdouble
nc_hicosmo_Press_mnu0 (NcHICosmo *cosmo
);
Dimensionless massive neutrinos pressure today $P_{m\nu0} = p_{m\nu0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Press_mnu0]
gdouble nc_hicosmo_Omega_mnu0_n (NcHICosmo *cosmo
,const guint n
);
The n-th dimensionless massive neutrinos density today $\Omega_{m\nu0,n} = \rho_{m\nu0,n} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_mnu0_n]
gdouble nc_hicosmo_Press_mnu0_n (NcHICosmo *cosmo
,const guint n
);
The n-th dimensionless massive neutrinos pressure today $P_{m\nu0,n} = p_{m\nu0,n} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Press_mnu0_n]
gdouble
nc_hicosmo_Omega_m0 (NcHICosmo *cosmo
);
Dimensionless total dust density today $\Omega_{m0} = \rho_{m0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
gdouble
nc_hicosmo_Omega_r0 (NcHICosmo *cosmo
);
Dimensionless total radiation density today $\Omega_{r0} = \rho_{r0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_r0]
gdouble
nc_hicosmo_Omega_t0 (NcHICosmo *cosmo
);
Dimensionless total matter density today $\Omega_{t0} = \rho_{t0} / \rho_{\mathrm{crit}0}$,
see nc_hicosmo_crit_density()
.
[virtual Omega_t0]
gdouble
nc_hicosmo_Omega_k0 (NcHICosmo *cosmo
);
The curvature parameter today, $\Omega_{k0}$.
gdouble
nc_hicosmo_Omega_b0h2 (NcHICosmo *cosmo
);
Dimensionless baryon density today [nc_hicosmo_Omega_b0()
] times $h^2$.
gdouble
nc_hicosmo_Omega_c0h2 (NcHICosmo *cosmo
);
Dimensionless cold dark matter density today [nc_hicosmo_Omega_c0()
] times $h^2$.
gdouble
nc_hicosmo_Omega_g0h2 (NcHICosmo *cosmo
);
Dimensionless photon density today [nc_hicosmo_Omega_g0()
] times $h^2$.
gdouble
nc_hicosmo_Omega_nu0h2 (NcHICosmo *cosmo
);
Dimensionless relativistic neutrinos density today [nc_hicosmo_Omega_nu0()
] times $h^2$.
gdouble
nc_hicosmo_Omega_mnu0h2 (NcHICosmo *cosmo
);
Dimensionless massive neutrinos density today [nc_hicosmo_Omega_mnu0()
] times $h^2$.
gdouble
nc_hicosmo_Omega_m0h2 (NcHICosmo *cosmo
);
Dimensionless total dust density today [nc_hicosmo_Omega_m0()
] times $h^2$.
gdouble
nc_hicosmo_Omega_r0h2 (NcHICosmo *cosmo
);
Dimensionless total radiation density today [nc_hicosmo_Omega_r0()
] times $h^2$.
gdouble
nc_hicosmo_T_gamma0 (NcHICosmo *cosmo
);
Gets the cosmic microwave background radiation temperature today.
[virtual T_gamma0]
gdouble
nc_hicosmo_Yp_4He (NcHICosmo *cosmo
);
Gets the primordial Helium mass fraction, i.e., $$Y_p = \frac{m_\mathrm{He}n_\mathrm{He}} {m_\mathrm{He}n_\mathrm{He} + m_\mathrm{H}n_\mathrm{H}},$$ where $m_\mathrm{He}$, $n_\mathrm{He}$, $m_\mathrm{H}$ and $m_\mathrm{H}$ are respectively Helium-4 mass and number density and Hydrogen-1 mass and number density.
[virtual Yp_4He]
gdouble
nc_hicosmo_Yp_1H (NcHICosmo *cosmo
);
The primordial hydrogen mass fraction $$Y_{\text{1H}p} = 1 - Y_p,$$
where $Y_p$ is the helium mass fraction, see nc_hicosmo_Yp_4He()
.
gdouble
nc_hicosmo_XHe (NcHICosmo *cosmo
);
The primordial Helium to Hydrogen ratio $$X_\text{He} =
\frac{n_\text{He}}{n_\text{H}} = \frac{m_\text{1H}}{m_\text{4He}}
\frac{Y_p}{Y_{\text{1H}p}},$$ see nc_hicosmo_Yp_1H()
and nc_hicosmo_Yp_4He()
.
gdouble
nc_hicosmo_crit_density (NcHICosmo *cosmo
);
Calculares the critical density $\rho_\mathrm{crit}$ using
ncm_c_crit_density_h2()
$\times$ nc_hicosmo_h2()
.
gdouble
nc_hicosmo_baryon_density (NcHICosmo *cosmo
);
Calculares the baryon density $\rho_{b0} = \rho_{\mathrm{crit}0} \Omega_{b0}$
using nc_hicosmo_crit_density()
$\times$ nc_hicosmo_Omega_b0()
.
gdouble
nc_hicosmo_He_number_density (NcHICosmo *cosmo
);
Calculares the Helium-4 number density $n_\mathrm{4He} = Y_p n_{b0} / m_\mathrm{4He}$
using nc_hicosmo_Yp_4He()
$\times$ nc_hicosmo_baryon_density()
/ ncm_c_rest_energy_4He()
.
gdouble
nc_hicosmo_H_number_density (NcHICosmo *cosmo
);
Calculares the Hydrogen-1 number density $n_\mathrm{1H} = Y_{\mathrm{1H}p} n_{b0} / m_\mathrm{1H}$
using nc_hicosmo_Yp_1H()
$\times$ nc_hicosmo_baryon_density()
/ ncm_c_rest_energy_1H()
.
gdouble nc_hicosmo_E2Omega_b (NcHICosmo *cosmo
,const gdouble z
);
Baryonic density $E^2\Omega_{b} = \rho_b(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_b]
gdouble nc_hicosmo_E2Omega_c (NcHICosmo *cosmo
,const gdouble z
);
Cold dark matter density $E^2\Omega_{c} = \rho_c(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_c]
gdouble nc_hicosmo_E2Omega_g (NcHICosmo *cosmo
,const gdouble z
);
Photons density $E^2\Omega_{\gamma} = \rho_\gamma(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_g]
gdouble nc_hicosmo_E2Omega_nu (NcHICosmo *cosmo
,const gdouble z
);
Ultra-relativistic neutrinos density $E^2\Omega_{\nu} = \rho_\nu(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_nu]
gdouble nc_hicosmo_E2Omega_mnu (NcHICosmo *cosmo
,const gdouble z
);
Massive neutrinos density $E^2\Omega_{m\nu} = \rho_{m\nu}(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_mnu]
gdouble nc_hicosmo_E2Press_mnu (NcHICosmo *cosmo
,const gdouble z
);
Massive neutrinos density $E^2P_{m\nu} = p_{m\nu}(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Press_mnu]
gdouble nc_hicosmo_E2Omega_mnu_n (NcHICosmo *cosmo
,const guint n
,const gdouble z
);
The n-th massive neutrinos density $E^2\Omega_{m\nu,n} = \rho_{m\nu,n}(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_mnu_n]
gdouble nc_hicosmo_E2Press_mnu_n (NcHICosmo *cosmo
,const guint n
,const gdouble z
);
The n-th massive neutrinos pressure $E^2P_{m\nu,n} = p_{m\nu,n}(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Press_mnu_n]
gdouble nc_hicosmo_E2Omega_m (NcHICosmo *cosmo
,const gdouble z
);
Total matter density $E^2\Omega_{m} = \rho_m(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_m]
gdouble nc_hicosmo_E2Omega_r (NcHICosmo *cosmo
,const gdouble z
);
Total radiation density $\Omega_{r} = \rho_r(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_r]
gdouble nc_hicosmo_E2Omega_t (NcHICosmo *cosmo
,const gdouble z
);
Total density $E2\Omega_{t0} = \rho_t(z) / \rho_{\mathrm{crit}0}$.
[virtual E2Omega_t]
gdouble nc_hicosmo_H (NcHICosmo *cosmo
,const gdouble z
);
The value of the Hubble function in unity of $\mathrm{m}\,\mathrm{s}^{-1}\,\mathrm{kpc}^{-1}$,
see ncm_c_kpc()
.
gdouble nc_hicosmo_E (NcHICosmo *cosmo
,const gdouble z
);
This function computes the normalized Hubble function $E(z)$.
gdouble nc_hicosmo_E2 (NcHICosmo *cosmo
,const gdouble z
);
Normalized Hubble function squared.
[virtual E2]
gdouble nc_hicosmo_Em2 (NcHICosmo *cosmo
,const gdouble z
);
This function computes the inverse of the square normalized Hubble function.
gdouble nc_hicosmo_dE2_dz (NcHICosmo *cosmo
,const gdouble z
);
FIXME
[virtual dE2_dz]
gdouble nc_hicosmo_d2E2_dz2 (NcHICosmo *cosmo
,const gdouble z
);
FIXME
[virtual d2E2_dz2]
gdouble nc_hicosmo_bgp_cs2 (NcHICosmo *cosmo
,const gdouble z
);
Baryon-photon plasma speed of sound squared, $$c_s^{b\gamma2} = (\dot{\rho}_b + \dot{\rho}_\gamma) / (p_b + p_\gamma).$$
[virtual bgp_cs2]
void nc_hicosmo_MassNuInfo (NcHICosmo *cosmo
,guint nu_i
,gdouble *mass_eV
,gdouble *T_0
,gdouble *xi
,gdouble *g
);
FIXME
[virtual MassNuInfo]
void nc_hicosmo_get_bg_var (NcHICosmo *cosmo
,const gdouble t
,NcHIPertBGVar *bg_var
);
[virtual get_bg_var]
gdouble nc_hicosmo_mqE2 (NcHICosmo *cosmo
,const gdouble z
);
Calculates $-q(z)E^2(z)$.
Flags defining the implementation options of the NcHICosmo abstract object.
Hubble constant |
||
Baryonic density today $\Omega_{b0} = \rho_{b0} / \rho_{\mathrm{crit}0}$ |
||
Cold dark matter density today $\Omega_{c0} = \rho_{c0} / \rho_{\mathrm{crit}0}$ |
||
Photons density today $\Omega_{\gamma0} = \rho_{\gamma0} / \rho_{\mathrm{crit}0}$ |
||
Ultra-relativistic neutrinos density today $\Omega_{\nu0} = \rho_{\nu0} / \rho_{\mathrm{crit}0}$ |
||
Massive neutrinos density today $\Omega_{m\nu0} = \rho_{m\nu0} / \rho_{\mathrm{crit}0}$ |
||
Massive neutrinos dimensionless pressure today $P_{m\nu0} = p_{m\nu0} / \rho_{\mathrm{crit}0}$ |
||
The n-th massive neutrinos density today $\Omega_{m\nu0,n} = \rho_{m\nu0,n} / \rho_{\mathrm{crit}0}$ |
||
The n-th massive neutrinos dimensionless pressure today $P_{m\nu0,n} = p_{m\nu0,n} / \rho_{\mathrm{crit}0}$ |
||
Total matter density today $\Omega_{m0} = \rho_{m0} / \rho_{\mathrm{crit}0}$ |
||
Total radiation density today $\Omega_{r0} = \rho_{r0} / \rho_{\mathrm{crit}0}$ |
||
Total density today $\Omega_{t0}$ |
||
Radiation temperature today |
||
Primordial Helium mass fraction |
||
Redshift of the last scattering surface |
||
Acoustic Scale at drag redshift |
||
Maximum redshift |
||
Baryonic density $E^2\Omega_{b} = \rho_b(z) / \rho_{\mathrm{crit}0}$ |
||
Cold dark matter density $E^2\Omega_{c} = \rho_c(z) / \rho_{\mathrm{crit}0}$ |
||
Photons density $E^2\Omega_{\gamma} = \rho_\gamma(z) / \rho_{\mathrm{crit}0}$ |
||
Ultra-relativistic neutrinos density $E^2\Omega_{\nu} = \rho_\nu(z) / \rho_{\mathrm{crit}0}$ |
||
Massive neutrinos density $E^2\Omega_{m\nu} = \rho_{m\nu}(z) / \rho_{\mathrm{crit}0}$ |
||
Massive neutrinos pressure $E^2P_{m\nu} = p_{m\nu}(z) / \rho_{\mathrm{crit}0}$ |
||
The n-th Massive neutrinos density $E^2\Omega_{m\nu,n} = \rho_{m\nu,n}(z) / \rho_{\mathrm{crit}0}$ |
||
The n-th Massive neutrinos pressure $E^2P_{m\nu,n} = p_{m\nu,n}(z) / \rho_{\mathrm{crit}0}$ |
||
Total matter density $E^2\Omega_{m} = \rho_m(z) / \rho_{\mathrm{crit}0}$ |
||
Total radiation density $\Omega_{r} = \rho_r(z) / \rho_{\mathrm{crit}0}$ |
||
Total density $E2\Omega_{t0} = \rho_t(z) / \rho_{\mathrm{crit}0}$ |
||
Dimensionless Hubble function squared $H^2(z) / H_0^2$ |
||
Derivative of the dimensionless Hubble function squared. |
||
Second derivative of the dimensionless Hubble function squared. |
||
Baryon-photon plasma speed of sound squared $c_s^2$. |
||
Comoving distance |
||
Number of massive neutrinos |
||
Massive neutrino info |
||
Background variables interface for perturbations |
#define NC_HICOSMO_IMPL_FLAG_RH_Mpc NCM_MODEL_OPT2IMPL (NC_HICOSMO_IMPL_H0)
#define NC_HICOSMO_IMPL_FLAG_RH_planck NCM_MODEL_OPT2IMPL (NC_HICOSMO_IMPL_H0)
#define NC_HICOSMO_IMPL_FLAG_Omega_k0 NCM_MODEL_OPT2IMPL (NC_HICOSMO_IMPL_Omega_t0)
#define NC_HICOSMO_IMPL_FLAG_Omega_b0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_b0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_Omega_c0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_c0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_Omega_g0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_g0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_Omega_nu0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_nu0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_Omega_mnu0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_mnu0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_Omega_m0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_m0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_Omega_r0h2 NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_Omega_r0, NC_HICOSMO_IMPL_h2)
#define NC_HICOSMO_IMPL_FLAG_H_Yp NCM_MODEL_OPT2IMPL (NC_HICOSMO_IMPL_Yp_4He)
#define NC_HICOSMO_IMPL_FLAG_XHe NCM_MODEL_OPT2IMPL (NC_HICOSMO_IMPL_Yp_4He)
#define NC_HICOSMO_IMPL_FLAG_H NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_H0, NC_HICOSMO_IMPL_E2)
#define NC_HICOSMO_IMPL_FLAG_dH_dz NCM_MODEL_3OPT2IMPL (NC_HICOSMO_IMPL_H0, NC_HICOSMO_IMPL_E2, NC_HICOSMO_IMPL_dE2_dz)
#define NC_HICOSMO_IMPL_FLAG_q NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_E2, NC_HICOSMO_IMPL_dE2_dz)
#define NC_HICOSMO_IMPL_FLAG_j NCM_MODEL_3OPT2IMPL (NC_HICOSMO_IMPL_E2, NC_HICOSMO_IMPL_dE2_dz, NC_HICOSMO_IMPL_d2E2_dz2)
#define NC_HICOSMO_IMPL_FLAG_wec NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_E2, NC_HICOSMO_IMPL_Omega_k0)
#define NC_HICOSMO_IMPL_FLAG_dec NCM_MODEL_2OPT2IMPL (NC_HICOSMO_IMPL_E2, NC_HICOSMO_IMPL_Omega_k0)