Top |
NcmFftlogTophatwin2NcmFftlogTophatwin2 — Logarithm fast fourier transform for a kernel given by the square of the spherical Bessel function of order one. |
This object computes the function (see NcmFftlog) $$Y_n = \int_0^\infty t^{\frac{2\pi i n}{L}} K(t) dt,$$ where the kernel is the square of the top hat window function in the Fourier space $K(t) = W(t)^2$, \begin{eqnarray} W(t) &=& \frac{3}{t^3}(\sin t - t \cos t) \ &=& \frac{3}{t} j_1(t), \end{eqnarray} and $j_\nu(t)$ is the spherical Bessel function of the first kind.
NcmFftlogTophatwin2 * ncm_fftlog_tophatwin2_new (gdouble lnr0
,gdouble lnk0
,gdouble Lk
,guint N
);
Creates a new fftlog top hat window squared object.