NcmFftlogSBesselJLJM

NcmFftlogSBesselJLJM — Logarithm fast fourier transform for the base kernel for angular projections.

Functions

Properties

int dell Read / Write / Construct
int ell Read / Write / Construct
double lnw Read / Write / Construct

Types and Values

Object Hierarchy

    GObject
    ╰── NcmFftlog
        ╰── NcmFftlogSBesselJLJM

Description

This object computes the function (see NcmFftlog) $$Y_n = \int_0^\infty t^{\frac{2\pi i n}{L}} K(t) dt,$$ where the kernel are the product of spherical bessel function of the first kind $K(t) = t^q j_{\ell}(t r) j_{\ell+\delta\ell}(t / r)$, where $\delta\ell = m - l$.

Functions

ncm_fftlog_sbessel_jljm_new ()

NcmFftlogSBesselJLJM *
ncm_fftlog_sbessel_jljm_new (gint ell,
                             gint dell,
                             gdouble lnw,
                             gdouble lnr0,
                             gdouble lnk0,
                             gdouble Lk,
                             guint N);

Creates a new fftlog Spherical Bessel $j_\ell(xr) j_{\ell+\delta\ell}(x/r)$ object.

Parameters

ell

Spherical Bessel Integer order

 

dell

Spherical Bessel Integer order

 

lnw

log-scale difference $\ln(r)$

 

lnr0

output center $\ln(r_0)$

 

lnk0

input center $\ln(k_0)$

 

Lk

input/output interval size

 

N

number of knots

 

Returns

a new NcmFftlogSBesselJLJM.

[transfer full]


ncm_fftlog_sbessel_jljm_set_ell ()

void
ncm_fftlog_sbessel_jljm_set_ell (NcmFftlogSBesselJLJM *fftlog_jljm,
                                 const gint ell);

Sets ell as the Spherical Bessel integer order $\ell$.

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

ell

Spherical Bessel integer order $\ell$

 

ncm_fftlog_sbessel_jljm_get_ell ()

gint
ncm_fftlog_sbessel_jljm_get_ell (NcmFftlogSBesselJLJM *fftlog_jljm);

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

Returns

the current Spherical Bessel integer order $\ell$.


ncm_fftlog_sbessel_jljm_set_dell ()

void
ncm_fftlog_sbessel_jljm_set_dell (NcmFftlogSBesselJLJM *fftlog_jljm,
                                  const gint dell);

Sets dell as the Spherical Bessel integer order $\delta\ell$.

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

dell

Spherical Bessel integer order $\dell$

 

ncm_fftlog_sbessel_jljm_get_dell ()

gint
ncm_fftlog_sbessel_jljm_get_dell (NcmFftlogSBesselJLJM *fftlog_jljm);

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

Returns

the current Spherical Bessel integer order $\delta\ell$.


ncm_fftlog_sbessel_jljm_set_q ()

void
ncm_fftlog_sbessel_jljm_set_q (NcmFftlogSBesselJLJM *fftlog_jljm,
                               const gdouble q);

Sets q as the Spherical Bessel power $q$.

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

q

Spherical Bessel power factor $q$

 

ncm_fftlog_sbessel_jljm_get_q ()

gdouble
ncm_fftlog_sbessel_jljm_get_q (NcmFftlogSBesselJLJM *fftlog_jljm);

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

Returns

the current Spherical Bessel power $q$.


ncm_fftlog_sbessel_jljm_set_lnw ()

void
ncm_fftlog_sbessel_jljm_set_lnw (NcmFftlogSBesselJLJM *fftlog_jljm,
                                 const gdouble lnw);

Sets lnw as the Spherical Bessel log-scale difference $\ln(w)$.

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

lnw

Spherical Bessel log-scale difference $\ln(w)$

 

ncm_fftlog_sbessel_jljm_get_lnw ()

gdouble
ncm_fftlog_sbessel_jljm_get_lnw (NcmFftlogSBesselJLJM *fftlog_jljm);

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

Returns

the current Spherical Bessel power $\ln(w)$.


ncm_fftlog_sbessel_jljm_set_best_lnr0 ()

void
ncm_fftlog_sbessel_jljm_set_best_lnr0 (NcmFftlogSBesselJLJM *fftlog_jljm);

Sets the value of $\ln(r_0)$ which gives the best results for the transformation based on the current value of $\ln(k_0)$, this is based in the rule of thumb $\mathrm{max}_{x^*}(j_l)$ where $ x^* \approx l + 1$.

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

ncm_fftlog_sbessel_jljm_set_best_lnk0 ()

void
ncm_fftlog_sbessel_jljm_set_best_lnk0 (NcmFftlogSBesselJLJM *fftlog_jljm);

Sets the value of $\ln(k_0)$ which gives the best results for the transformation based on the current value of $\ln(r_0)$, this is based in the rule of thumb $\mathrm{max}_{x^*}(j_l)$ where $ x^* \approx l + 1$.

Parameters

fftlog_jljm

a NcmFftlogSBesselJLJM

 

Types and Values

NCM_TYPE_FFTLOG_SBESSEL_JLJM

#define NCM_TYPE_FFTLOG_SBESSEL_JLJM (ncm_fftlog_sbessel_jljm_get_type ())

NcmFftlogSBesselJLJM

typedef struct _NcmFftlogSBesselJLJM NcmFftlogSBesselJLJM;

Property Details

The “dell” property

  “dell”                     int

Spherical Bessel integer order difference $j_\ell j_{\ell+d\ell}$.

Owner: NcmFftlogSBesselJLJM

Flags: Read / Write / Construct

Default value: 0


The “ell” property

  “ell”                      int

Spherical Bessel integer order j_\ell j_{\ell+d\ell}.

Owner: NcmFftlogSBesselJLJM

Flags: Read / Write / Construct

Allowed values: >= 0

Default value: 0


The “lnw” property

  “lnw”                      double

Spherical Bessel scale difference log(w).

Owner: NcmFftlogSBesselJLJM

Flags: Read / Write / Construct

Allowed values: [-708.396,0]

Default value: 0