Top |
NcmFftlogSBesselJLJMNcmFftlogSBesselJLJM — Logarithm fast fourier transform for the base kernel for angular projections. |
NcmFftlogSBesselJLJM * | ncm_fftlog_sbessel_jljm_new () |
void | ncm_fftlog_sbessel_jljm_set_ell () |
gint | ncm_fftlog_sbessel_jljm_get_ell () |
void | ncm_fftlog_sbessel_jljm_set_dell () |
gint | ncm_fftlog_sbessel_jljm_get_dell () |
void | ncm_fftlog_sbessel_jljm_set_q () |
gdouble | ncm_fftlog_sbessel_jljm_get_q () |
void | ncm_fftlog_sbessel_jljm_set_lnw () |
gdouble | ncm_fftlog_sbessel_jljm_get_lnw () |
void | ncm_fftlog_sbessel_jljm_set_best_lnr0 () |
void | ncm_fftlog_sbessel_jljm_set_best_lnk0 () |
This object computes the function (see NcmFftlog) $$Y_n = \int_0^\infty t^{\frac{2\pi i n}{L}} K(t) dt,$$ where the kernel are the product of spherical bessel function of the first kind $K(t) = t^q j_{\ell}(t r) j_{\ell+\delta\ell}(t / r)$, where $\delta\ell = m - l$.
NcmFftlogSBesselJLJM * ncm_fftlog_sbessel_jljm_new (gint ell
,gint dell
,gdouble lnw
,gdouble lnr0
,gdouble lnk0
,gdouble Lk
,guint N
);
Creates a new fftlog Spherical Bessel $j_\ell(xr) j_{\ell+\delta\ell}(x/r)$ object.
void ncm_fftlog_sbessel_jljm_set_ell (NcmFftlogSBesselJLJM *fftlog_jljm
,const gint ell
);
Sets ell
as the Spherical Bessel integer order $\ell$.
gint
ncm_fftlog_sbessel_jljm_get_ell (NcmFftlogSBesselJLJM *fftlog_jljm
);
void ncm_fftlog_sbessel_jljm_set_dell (NcmFftlogSBesselJLJM *fftlog_jljm
,const gint dell
);
Sets dell
as the Spherical Bessel integer order $\delta\ell$.
gint
ncm_fftlog_sbessel_jljm_get_dell (NcmFftlogSBesselJLJM *fftlog_jljm
);
void ncm_fftlog_sbessel_jljm_set_q (NcmFftlogSBesselJLJM *fftlog_jljm
,const gdouble q
);
Sets q
as the Spherical Bessel power $q$.
gdouble
ncm_fftlog_sbessel_jljm_get_q (NcmFftlogSBesselJLJM *fftlog_jljm
);
void ncm_fftlog_sbessel_jljm_set_lnw (NcmFftlogSBesselJLJM *fftlog_jljm
,const gdouble lnw
);
Sets lnw
as the Spherical Bessel log-scale difference $\ln(w)$.
gdouble
ncm_fftlog_sbessel_jljm_get_lnw (NcmFftlogSBesselJLJM *fftlog_jljm
);
void
ncm_fftlog_sbessel_jljm_set_best_lnr0 (NcmFftlogSBesselJLJM *fftlog_jljm
);
Sets the value of $\ln(r_0)$ which gives the best results for the transformation based on the current value of $\ln(k_0)$, this is based in the rule of thumb $\mathrm{max}_{x^*}(j_l)$ where $ x^* \approx l + 1$.
void
ncm_fftlog_sbessel_jljm_set_best_lnk0 (NcmFftlogSBesselJLJM *fftlog_jljm
);
Sets the value of $\ln(k_0)$ which gives the best results for the transformation based on the current value of $\ln(r_0)$, this is based in the rule of thumb $\mathrm{max}_{x^*}(j_l)$ where $ x^* \approx l + 1$.
#define NCM_TYPE_FFTLOG_SBESSEL_JLJM (ncm_fftlog_sbessel_jljm_get_type ())
“dell”
property “dell” int
Spherical Bessel integer order difference $j_\ell j_{\ell+d\ell}$.
Owner: NcmFftlogSBesselJLJM
Flags: Read / Write / Construct
Default value: 0
“ell”
property “ell” int
Spherical Bessel integer order j_\ell j_{\ell+d\ell}.
Owner: NcmFftlogSBesselJLJM
Flags: Read / Write / Construct
Allowed values: >= 0
Default value: 0