Top |
NcmFftlogGausswin2NcmFftlogGausswin2 — Logarithm fast fourier transform for a kernel given by the square of a Gaussian window function. |
This object computes the function (see NcmFftlog) $$Y_n = \int_0^\infty t^{\frac{2\pi i n}{L}} K(t) dt,$$ where the kernel is the square of the Gaussian window function $K(t) = W(t)^2$, \begin{equation} W(t) = \exp \left( \frac{-t^2}{2} \right). \end{equation}
NcmFftlogGausswin2 * ncm_fftlog_gausswin2_new (gdouble lnr0
,gdouble lnk0
,gdouble Lk
,guint N
);
Creates a new fftlog Gaussian window squared object.