Top |
This object implements the NcWindow class for a top-hat window function.
The top-hat window function in the real space is defined as, \begin{equation*} W_{TH}(r, R) = \frac{3}{4\pi R^3}, \,\,\,\, \mathrm{for} \,\,\, r \leq R \,\, , \end{equation*} and 0 otherwise. The mass enclosed within the volume selected by this window function is $$M_{TH}(R)= \frac{4\pi}{3}\bar{\rho} R^3 \, ,$$ where $\bar{\rho}(z)$ is the mean density of the universe at redshift $z$.
When the function nc_window_eval_fourier()
is applied,
it returns the top-hat window function in the Fourier space,
\begin{equation*}
W_{th}(k, R) = \frac{3}{(kR)^3} \left[ \sin (kR) - (kR)\cos (kR)\right] = \frac{3}{(kR)} j_1(kR),
\end{equation*}
where $j_\nu(kR)$ is the spherical Bessel function.
The function nc_window_deriv_fourier()
returns the derivative with respect to R in Fourier space,
\begin{equation*}
\frac{\mathrm{d} W_{TH}(k, R)}{\mathrm{d} R} = -\frac{9}{k^3 R^4} \left[ \sin (kR) - (kR)\cos (kR) \right] + \frac{3}{k R^2} \sin (kR) \, .
\end{equation*}
The derivative with respect to R in real space is performed by nc_window_eval_realspace()
.
NcWindow *
nc_window_tophat_new (void
);
This function returns a NcWindow with a NcWindowTophat implementation.