Top |
This object implements the NcWindow class for a Gaussian window function.
The gaussian window function in the real space is defined as, \begin{equation*} W_G(r, R) = (2 \pi R^2)^{-3/2}\exp \left( \frac{-r^2}{2 R^2} \right). \end{equation*} The mass enclosed within the volume selected by this window function is $$M_G(R) = (2\pi)^{3/2}\bar{\rho}(z) R^3 \, ,$$ where $\bar{\rho}(z)$ is the mean density of the universe at redshift $z$.
When the function nc_window_eval_fourier()
is applied,
it returns the gaussian window function in the Fourier space,
\begin{equation*}
W_G(k, R) = \exp \left( \frac{-k^2 R^2}{2} \right).
\end{equation*}
and nc_window_deriv_fourier()
returns the derivative with
respect to R of the gaussian window function in the Fourier space,
\begin{equation*}
\frac{dW_G(k, R)}{dR} = -k^2 R \exp \left( \frac{-k^2 R^2}{2} \right).
\end{equation*}
The derivative with respect to R in real space is performed by nc_window_eval_realspace()
.
NcWindow *
nc_window_gaussian_new (void
);
This function returns a NcWindow with a NcWindowGaussian implementation.