NcSNIADistCov

NcSNIADistCov — Supernovae distance covariance between distance estimates.

Functions

Properties

double M1 Read / Write
gboolean M1-fit Read / Write
double M2 Read / Write
gboolean M2-fit Read / Write
double alpha Read / Write
gboolean alpha-fit Read / Write
double beta Read / Write
gboolean beta-fit Read / Write
NcDistance * dist Read / Write / Construct
gboolean empty-fac Read / Write / Construct
NcmVector * lnsigma-int Read / Write
GVariant * lnsigma-int-fit Read / Write
guint lnsigma-int-length Read / Write / Construct Only
double lnsigma-lens Read / Write
gboolean lnsigma-lens-fit Read / Write
double lnsigma-pecz Read / Write
gboolean lnsigma-pecz-fit Read / Write
NcmVector * mu Read / Write
GVariant * mu-fit Read / Write
guint mu-length Read / Write / Construct Only

Types and Values

Object Hierarchy

    GEnum
    ├── NcSNIADistCovSParams
    ╰── NcSNIADistCovVParams
    GObject
    ╰── NcmModel
        ╰── NcSNIADistCov

Description

This object implements the calculation necessary to make a statistical analysis using data from Conley et al. (2011) and Sullivan et al. (2011).

Is also supports Betoule et al. (2014).

Functions

nc_snia_dist_cov_new ()

NcSNIADistCov *
nc_snia_dist_cov_new (NcDistance *dist,
                      guint sigma_int_len);

FIXME

Parameters

dist

a NcDistance

 

sigma_int_len

length of the sigma_int dataset

 

Returns

FIXME


nc_snia_dist_cov_new_by_id ()

NcSNIADistCov *
nc_snia_dist_cov_new_by_id (NcDistance *dist,
                            NcDataSNIAId snia_id);

Creates a new SNIa model using the default values for the sample defined by snia_id .

[constructor]

Parameters

dist

a NcDistance

 

snia_id

a NcDataSNIAId

 

Returns

a new NcSNIADistCov.

[transfer full]


nc_snia_dist_cov_ref ()

NcSNIADistCov *
nc_snia_dist_cov_ref (NcSNIADistCov *dcov);

Increases the reference count of dcov .

Parameters

dcov

a NcSNIADistCov

 

Returns

the same dcov .

[transfer full]


nc_snia_dist_cov_free ()

void
nc_snia_dist_cov_free (NcSNIADistCov *dcov);

Decreases the reference count of dcov . If the reference count reaches 0, the object is freed.

Parameters

dcov

a NcSNIADistCov

 

nc_snia_dist_cov_clear ()

void
nc_snia_dist_cov_clear (NcSNIADistCov **dcov);

If *dcov is not NULL, decreases the reference count of dcov and sets *dcov to NULL.

Parameters

dcov

a NcSNIADistCov

 

nc_snia_dist_cov_set_empty_fac ()

void
nc_snia_dist_cov_set_empty_fac (NcSNIADistCov *dcov,
                                gboolean enable);

Sets the empty universe approximation factor to enable .

Parameters

dcov

a NcSNIADistCov

 

enable

a gboolean

 

nc_snia_dist_cov_set_dist ()

void
nc_snia_dist_cov_set_dist (NcSNIADistCov *dcov,
                           NcDistance *dist);

Sets the NcDistance object to dist .

Parameters

dcov

a NcSNIADistCov

 

dist

a NcDistance

 

nc_snia_dist_cov_prepare ()

void
nc_snia_dist_cov_prepare (NcSNIADistCov *dcov,
                          NcmMSet *mset);

Prepares the distance calculation using the cosmological model from mset .

Parameters

dcov

a NcSNIADistCov

 

mset

a NcmMSet

 

nc_snia_dist_cov_prepare_if_needed ()

void
nc_snia_dist_cov_prepare_if_needed (NcSNIADistCov *dcov,
                                    NcmMSet *mset);

Prepares the distance calculation using the cosmological model from mset if needed.

Parameters

dcov

a NcSNIADistCov

 

mset

a NcmMSet

 

nc_snia_dist_cov_calc ()

gboolean
nc_snia_dist_cov_calc (NcSNIADistCov *dcov,
                       NcDataSNIACov *snia_cov,
                       NcmMatrix *cov);

Computes the covariance matrix for the SN Ia distance estimates. If the covariance matrix is already computed and the parameters are the same, the function returns FALSE.

Parameters

dcov

a NcSNIADistCov

 

snia_cov

a NcDataSNIACov

 

cov

a NcmMatrix

 

Returns

whether the covariance was computed.


nc_snia_dist_cov_mean ()

void
nc_snia_dist_cov_mean (NcSNIADistCov *dcov,
                       NcHICosmo *cosmo,
                       NcDataSNIACov *snia_cov,
                       NcmVector *y);

Computes the mean of the SN Ia distance estimates.

Parameters

dcov

a NcSNIADistCov

 

cosmo

a NcHICosmo

 

snia_cov

a NcDataSNIACov

 

y

a NcmVector

 

nc_snia_dist_cov_mean_V2 ()

void
nc_snia_dist_cov_mean_V2 (NcSNIADistCov *dcov,
                          NcHICosmo *cosmo,
                          NcDataSNIACov *snia_cov,
                          NcmVector *y);

Computes the mean of the SN Ia distance estimates for the second version of the model.

Parameters

dcov

a NcSNIADistCov

 

cosmo

a NcHICosmo

 

snia_cov

a NcDataSNIACov

 

y

a NcmVector

 

nc_snia_dist_cov_mag ()

gdouble
nc_snia_dist_cov_mag (NcSNIADistCov *dcov,
                      NcHICosmo *cosmo,
                      NcDataSNIACov *snia_cov,
                      guint i,
                      gdouble width_th,
                      gdouble colour_th);

Computes the apparent magnitude from model, width and colour.

Parameters

dcov

a NcSNIADistCov

 

cosmo

a NcHICosmo

 

snia_cov

a NcDataSNIACov

 

i

the distance index

 

width_th

the true width

 

colour_th

the true colour

 

Returns

the apparent magnitude.


nc_snia_dist_cov_mag_to_width_colour ()

void
nc_snia_dist_cov_mag_to_width_colour (NcSNIADistCov *dcov,
                                      NcHICosmo *cosmo,
                                      NcDataSNIACov *snia_cov,
                                      NcmVector *obs,
                                      NcmMatrix *X,
                                      gboolean colmajor);

Computes effective observed vector obs , the first snia_cov->mu_len parameters are set to the width colour combination using the values of the distance modulus from the model cosmo and the SNIa model dcov , i.e., $-\alpha{}w_i+\beta{}c_i = m_{\mathrm{B},i} - \mu_{\mathrm{th},i}-\alpha-\mathcal{M}_i$. The next 2 * snia_cov->mu_len are the observed widths and then the observed colours.

The vector obs must be of size 3 * snia_cov->mu_len .

Parameters

dcov

a NcSNIADistCov

 

cosmo

a NcHICosmo

 

snia_cov

a NcDataSNIACov

 

obs

a NcmVector

 

X

a NcmMatrix

 

colmajor

whether to fill the matrices in a col-major format

 

nc_snia_dist_cov_extra_var ()

gdouble
nc_snia_dist_cov_extra_var (NcSNIADistCov *dcov,
                            NcDataSNIACov *snia_cov,
                            guint i);

Computes the total variance of the i -th distance, not related to the magnitude, width or colour errors.

Parameters

dcov

a NcSNIADistCov

 

snia_cov

a NcDataSNIACov

 

i

the distance index

 

Returns

the variance


nc_snia_dist_cov_alpha_beta ()

void
nc_snia_dist_cov_alpha_beta (NcSNIADistCov *dcov,
                             gdouble *alpha,
                             gdouble *beta);

Returns the values of $\alpha$ and $\beta$.

Parameters

dcov

a NcSNIADistCov

 

alpha

value of alpha.

[out caller-allocates]

beta

value of beta.

[out caller-allocates]

Types and Values

enum NcSNIADistCovSParams

SN Ia distance covariance model parameters.

Members

NC_SNIA_DIST_COV_ALPHA

Stretch parameter $\alpha$

 

NC_SNIA_DIST_COV_BETA

Colour parameter $\beta$

 

NC_SNIA_DIST_COV_M1

Absolute magnitude parameter $M_1$

 

NC_SNIA_DIST_COV_M2

Absolute magnitude parameter $M_2$

 

NC_SNIA_DIST_COV_LNSIGMA_PECZ

Logarithm of the dispersion due to peculiar velocities

 

NC_SNIA_DIST_COV_LNSIGMA_LENS

Logarithm of the dispersion due to lensing

 

enum NcSNIADistCovVParams

SN Ia distance covariance model parameters.

Members

NC_SNIA_DIST_COV_LNSIGMA_INT

Intrinsic dispersion parameter $\ln \sigma_{\rm int}$

 

NC_SNIA_DIST_COV_MU

Mean absolute magnitude parameter $\mu$

 

NC_SNIA_DIST_COV_DEFAULT_ALPHA

#define NC_SNIA_DIST_COV_DEFAULT_ALPHA (0.145)

NC_SNIA_DIST_COV_DEFAULT_BETA

#define NC_SNIA_DIST_COV_DEFAULT_BETA (3.16)

NC_SNIA_DIST_COV_DEFAULT_M1

#define NC_SNIA_DIST_COV_DEFAULT_M1 (-19.1686133146)

NC_SNIA_DIST_COV_DEFAULT_M2

#define NC_SNIA_DIST_COV_DEFAULT_M2 (-19.1856133146)

NC_SNIA_DIST_COV_DEFAULT_LNSIGMA_PECZ

#define NC_SNIA_DIST_COV_DEFAULT_LNSIGMA_PECZ (log (150.0e3 / ncm_c_c ()))

NC_SNIA_DIST_COV_DEFAULT_LNSIGMA_LENS

#define NC_SNIA_DIST_COV_DEFAULT_LNSIGMA_LENS (log (0.055))

NC_SNIA_DIST_COV_DEFAULT_PARAMS_ABSTOL

#define NC_SNIA_DIST_COV_DEFAULT_PARAMS_ABSTOL (0.0)

NC_SNIA_DIST_COV_LNSIGMA_INT_DEFAULT_LEN

#define NC_SNIA_DIST_COV_LNSIGMA_INT_DEFAULT_LEN (4)

NC_SNIA_DIST_COV_DEFAULT_LNSIGMA_INT

#define NC_SNIA_DIST_COV_DEFAULT_LNSIGMA_INT (log (0.0989))

NC_SNIA_DIST_COV_MU_DEFAULT_LEN

#define NC_SNIA_DIST_COV_MU_DEFAULT_LEN (0)

NC_SNIA_DIST_COV_DEFAULT_MU

#define NC_SNIA_DIST_COV_DEFAULT_MU (18.0)

Property Details

The “M1” property

  “M1”                       double

\mathcal{M}_1.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: -19.1686


The “M1-fit” property

  “M1-fit”                   gboolean

\mathcal{M}_1:fit.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: FALSE


The “M2” property

  “M2”                       double

\mathcal{M}_2.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: -19.1856


The “M2-fit” property

  “M2-fit”                   gboolean

\mathcal{M}_2:fit.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: FALSE


The “alpha” property

  “alpha”                    double

\alpha.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: 0.145


The “alpha-fit” property

  “alpha-fit”                gboolean

\alpha:fit.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: FALSE


The “beta” property

  “beta”                     double

\beta.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: 3.16


The “beta-fit” property

  “beta-fit”                 gboolean

\beta:fit.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: FALSE


The “dist” property

  “dist”                     NcDistance *

Distance object.

Owner: NcSNIADistCov

Flags: Read / Write / Construct


The “empty-fac” property

  “empty-fac”                gboolean

Empty universe approximation factor.

Owner: NcSNIADistCov

Flags: Read / Write / Construct

Default value: TRUE


The “lnsigma-int” property

  “lnsigma-int”              NcmVector *

\ln(\sigma_{\mathrm{int}}).

Owner: NcSNIADistCov

Flags: Read / Write


The “lnsigma-int-fit” property

  “lnsigma-int-fit”          GVariant *

\ln(\sigma_{\mathrm{int}}):fit.

Owner: NcSNIADistCov

Flags: Read / Write

Allowed values: GVariant<ab>

Default value: NULL


The “lnsigma-int-length” property

  “lnsigma-int-length”       guint

\ln(\sigma_{\mathrm{int}}):length.

Owner: NcSNIADistCov

Flags: Read / Write / Construct Only

Default value: 4


The “lnsigma-lens” property

  “lnsigma-lens”             double

\ln(\sigma_{\mathrm{lens}}).

Owner: NcSNIADistCov

Flags: Read / Write

Default value: -2.90042


The “lnsigma-lens-fit” property

  “lnsigma-lens-fit”         gboolean

\ln(\sigma_{\mathrm{lens}}):fit.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: FALSE


The “lnsigma-pecz” property

  “lnsigma-pecz”             double

\ln(\sigma_{\mathrm{pecz}}).

Owner: NcSNIADistCov

Flags: Read / Write

Default value: -7.60021


The “lnsigma-pecz-fit” property

  “lnsigma-pecz-fit”         gboolean

\ln(\sigma_{\mathrm{pecz}}):fit.

Owner: NcSNIADistCov

Flags: Read / Write

Default value: FALSE


The “mu” property

  “mu”                       NcmVector *

\mu.

Owner: NcSNIADistCov

Flags: Read / Write


The “mu-fit” property

  “mu-fit”                   GVariant *

\mu:fit.

Owner: NcSNIADistCov

Flags: Read / Write

Allowed values: GVariant<ab>

Default value: NULL


The “mu-length” property

  “mu-length”                guint

\mu:length.

Owner: NcSNIADistCov

Flags: Read / Write / Construct Only

Default value: 0