NcmSFSBessel

NcmSFSBessel — Double precision spherical bessel implementation.

Functions

Description

Implementation of double precision spherical Bessel functions. This module leverages the multiple precision spherical Bessel functions implementation for precise computations. It involves converting the arguments to multiple precision, performing the calculations, and then converting the results back to double precision, ensuring accuracy in the computation of spherical Bessel functions with the convenience of double precision output.

Functions

ncm_sf_sbessel ()

gdouble
ncm_sf_sbessel (gulong l,
                gdouble x);

Computes Spherical Bessel function $j_\ell(x)$.

Parameters

l

Spherical Bessel order $\ell$

 

x

Spherical Bessel argument $x$

 

Returns

the value of $j_\ell(x)$.


ncm_sf_sbessel_taylor ()

void
ncm_sf_sbessel_taylor (gulong l,
                       gdouble x,
                       gdouble *djl);

Computes Spherical Bessel function power series coefficients up to order three, i.e., $$\left(j_\ell(x),\; j'_\ell(x), \frac{j''_\ell(x)}{2!}, \frac{j'''_\ell(x)}{3!}\right).$$

Parameters

l

Spherical Bessel order $\ell$

 

x

Spherical Bessel argument $x$

 

djl

Output power series coefficients.

[out][array fixed-size=4]

ncm_sf_sbessel_spline ()

NcmSpline *
ncm_sf_sbessel_spline (gulong l,
                       gdouble xi,
                       gdouble xf,
                       gdouble reltol);

Computes a spline approximation of the Spherical Bessel $j_\ell$ in the interval $[x_i, x_f]$.

Parameters

l

Spherical Bessel order $\ell$.

 

xi

Spherical Bessel interval lower-bound $x_i$.

 

xf

Spherical Bessel interval lower-bound $x_f$.

 

reltol

Interpolation error tolerance.

 

Returns

A NcmSpline with the Spherical Bessel approximation.

[transfer full]