Supernova Type Ia Analysis

Author

NumCosmo developers

In this example, we demonstrate how to use NumCosmo to compute cosmological observables and fit a model to data.

Computational Cosmology

NumCosmo provides tools for calculating cosmological observables with precision. For example, the comoving distance in an XCDM cosmology up to a redshift of \(z = 3.0\) can be computed with a few lines of code using the parameters \(\Omega_{c0} = 0.25\), \(\Omega_{b0} = 0.05\), and \(w\) varying from \(-1.5\) to \(-0.5\).

import numpy as np
import pandas as pd
from plotnine import *
import getdist
from getdist import plots

from numcosmo_py import Nc, Ncm
from numcosmo_py.plotting.getdist import mcat_to_mcsamples

# Initialize the library
Ncm.cfg_init()

cosmo = Nc.HICosmoDEXcdm()
dist = Nc.Distance()

cosmo.param_set_by_name("Omegac", 0.25)
cosmo.param_set_by_name("Omegab", 0.05)

dist_pd_a = []
for w in np.linspace(-1.5, -0.5, 5):
    cosmo.param_set_by_name("w", w)
    dist.prepare(cosmo)
    RH_Mpc = cosmo.RH_Mpc()

    z_a = np.linspace(0.0, 3.0, 200)
    d_a = np.array([dist.comoving(cosmo, z) for z in z_a]) * RH_Mpc

    dist_pd_a.append(pd.DataFrame({"z": z_a, "Dc": d_a, "eos_w": f"{w: .2f}"}))

dist_pd = pd.concat(dist_pd_a)

The code above computes the comoving distance for an XCDM cosmology with different values of the equation of state parameter \(w\).

Code
(
    ggplot(dist_pd, aes("z", "Dc", color="eos_w"))
    + geom_line()
    + labs(x=r"$z$", y=r"$D_c$ [Mpc]", color=r"$w$")
    + doc_theme()
)
Figure 1: Comoving distance for XCDM cosmology up to redshift \(z = 3.0\).

The Modeling

NumCosmo’s computational objects are designed for direct use in statistical analyses. In the example above, the HICosmoDEXcdm class defines the cosmological model, which is a subclass of the HICosmo class representing a homogeneous isotropic cosmology. The model’s parameters can be accessed and managed within a model set, using the MSet class, which serves as the main container for all models in a given analysis.

mset = Ncm.MSet.new_array([cosmo])
mset.pretty_log()
#----------------------------------------------------------------------------------
# Model[03000]:
#   - NcHICosmo : XCDM - Constant EOS
#----------------------------------------------------------------------------------
# Model parameters
#   -      H0[00]:  67.36               [FIXED]
#   -  Omegac[01]:  0.25                [FIXED]
#   -  Omegax[02]:  0.7                 [FIXED]
#   - Tgamma0[03]:  2.7245              [FIXED]
#   -      Yp[04]:  0.24                [FIXED]
#   -    ENnu[05]:  3.046               [FIXED]
#   -  Omegab[06]:  0.05                [FIXED]
#   -       w[07]: -0.5                 [FIXED]

Fitting Model to Data

Once models are defined and the free parameters are set, they can be analyzed using a variety of statistical methods. For example, the best-fit parameters for a given model can be found by maximizing the likelihood function.

Code
cosmo.props.w_fit = True
cosmo.props.Omegac_fit = True
mset.prepare_fparam_map()

lh = Ncm.Likelihood(
    dataset=Ncm.Dataset.new_array(
        [Nc.DataDistMu.new_from_id(dist, Nc.DataSNIAId.SIMPLE_UNION2_1)]
    )
)
fit = Ncm.Fit.factory(
    Ncm.FitType.NLOPT, "ln-neldermead", lh, mset, Ncm.FitGradType.NUMDIFF_FORWARD
)
fit.run(Ncm.FitRunMsgs.SIMPLE)
fit.log_info()
fit.fisher()
fit.log_covar()
#----------------------------------------------------------------------------------
# Model fitting. Interating using:
#  - solver:            NLOpt:ln-neldermead
#  - differentiation:   Numerical differentiantion (forward)
#................
#  Minimum found with precision: |df|/f =  1.00000e-08 and |dx| =  1.00000e-05
#  Elapsed time: 00 days, 00:00:00.8537400
#  iteration            [000074]
#  function evaluations [000076]
#  gradient evaluations [000000]
#  degrees of freedom   [000577]
#  m2lnL     =     562.219163105043 (     562.21916 )
#  Fit parameters:
#     0.230499952926549     -1.02959391499341      
#----------------------------------------------------------------------------------
# Data used:
#   - Union2.1 sample
#----------------------------------------------------------------------------------
# Model[03000]:
#   - NcHICosmo : XCDM - Constant EOS
#----------------------------------------------------------------------------------
# Model parameters
#   -      H0[00]:  67.36               [FIXED]
#   -  Omegac[01]:  0.230499952926549   [FREE]
#   -  Omegax[02]:  0.7                 [FIXED]
#   - Tgamma0[03]:  2.7245              [FIXED]
#   -      Yp[04]:  0.24                [FIXED]
#   -    ENnu[05]:  3.046               [FIXED]
#   -  Omegab[06]:  0.05                [FIXED]
#   -       w[07]: -1.02959391499341    [FREE]
#----------------------------------------------------------------------------------
# NcmMSet parameters covariance matrix
#                                                  -------------------------------
# Omegac[03000:01] =  0.2305      +/-  0.06233     |  1           | -0.9297      |
#      w[03000:07] = -1.03        +/-  0.08595     | -0.9297      |  1           |
#                                                  -------------------------------

The code above fits the XCDM model to the Union2.1 dataset, which contains supernova type Ia data. It computes the best-fit parameters for the model and the covariance matrix of the parameters using the Fisher matrix.

lhr2d = Ncm.LHRatio2d.new(
    fit,
    mset.fparam_get_pi_by_name("Omegac"),
    mset.fparam_get_pi_by_name("w"),
    1.0e-3,
)

best_fit = pd.DataFrame(
    {
        "Omegac": [cosmo.props.Omegac],
        "w": [cosmo.props.w],
        "sigma": "Best-fit",
        "region": "Best-fit",
    }
)


regions_pd_list = []
for i, sigma in enumerate(
    [Ncm.C.stats_1sigma(), Ncm.C.stats_2sigma(), Ncm.C.stats_3sigma()]
):
    fisher_rg = lhr2d.fisher_border(sigma, 300.0, Ncm.FitRunMsgs.NONE)
    Omegac_a = np.array(fisher_rg.p1.dup_array())
    w_a = np.array(fisher_rg.p2.dup_array())
    regions_pd_list.append(
        pd.DataFrame(
            {
                "Omegac": Omegac_a,
                "w": w_a,
                "sigma": rf"{i+1}$\sigma$",
                "region": "Fisher",
            }
        )
    )

regions_pd = pd.concat(regions_pd_list)

The code above computes the confidence regions for the best-fit parameters using the Fisher matrix.

Code
(
    ggplot(regions_pd, aes("Omegac", "w", fill="sigma", color="sigma"))
    + geom_polygon(alpha=0.3)
    + geom_point(data=best_fit)
    + labs(x=r"$\Omega_c$", y=r"$w$", fill=r"Confidence")
    + guides(fill=guide_legend(), color=False)
    + doc_theme()
)
Figure 2: Best-fit parameters and confidence regions for the XCDM model.

Running a MCMC Analysis

NumCosmo also provides tools for running Markov Chain Monte Carlo (MCMC) analyses. The code below runs an MCMC analysis using the APES algorithm.

init_sampler = Ncm.MSetTransKernGauss.new(0)
init_sampler.set_mset(mset)
init_sampler.set_prior_from_mset()
init_sampler.set_cov(fit.get_covar())

nwalkers = 300
walker = Ncm.FitESMCMCWalkerAPES.new(nwalkers, mset.fparams_len())
esmcmc = Ncm.FitESMCMC.new(fit, nwalkers, init_sampler, walker, Ncm.FitRunMsgs.NONE)

esmcmc.start_run()
esmcmc.run(6)
esmcmc.end_run()

Finally, we can extract the MCMC samples and visualize the results.

mcat = esmcmc.peek_catalog()
mcat.trim(2, 1)

mcsamples, _, _ = mcat_to_mcsamples(mcat, name="XCDM Supernova Ia Analysis")

g = plots.get_subplot_plotter()
g.triangle_plot(mcsamples, shaded=True)
Removed no burn in
Figure 3